![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering > Robotics
By proposing and forming a mobile manipulator for modern multi-floor buildings, A Robotic Framework for the Mobile Manipulator: Theory and Application helps readers visualize an end-to-end workflow for making a robot system work in a targeted environment. From a product-oriented viewpoint, this book is considered as a bridge from theories to real products, in which robotic software modules and the robotic system integration are mainly concerned. In the end, readers will have an overview of how to build and integrate various single robotic modules to execute a list of designed tasks in the real world, as well as how to make a robot system work independently, without human interventions. With references and execution guidelines provided at the end of each chapter, the book will be a useful tool for developers and researchers looking to expand their knowledge about the robotics and the robotic software.
Intended as an introduction to robot mechanics for students of mechanical, industrial, electrical, and bio-mechanical engineering, this graduate text presents a wide range of approaches and topics. It avoids formalism and proofs but nonetheless discusses advanced concepts and contemporary applications. It will thus also be of interest to practicing engineers. The book begins with kinematics, emphasizing an approach based on rigid-body displacements instead of coordinate transformations; it then turns to inverse kinematic analysis, presenting the widely used Pieper-Roth and zero-reference-position methods. This is followed by a discussion of workplace characterization and determination. One focus of the discussion is the motion made possible by sperical and other novel wrist designs. The text concludes with a brief discussion of dynamics and control. An extensive bibliography provides access to the current literature.
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
This book collects the main results of the Advanced Grant project RoDyMan funded by the European Research Council. As a final demonstrator of the project, a pizza-maker robot was realized. This represents a perfect example of understanding the robot challenge, considering every inexperienced person's difficulty preparing a pizza. Through RoDyMan, the opportunity was to merge all the acquired competencies in advancing the state of the art in nonprehensile dynamic manipulation, which is the most complex manipulation task, considering deformable objects. This volume is intended to present Ph.D. students and postgraduates working on deformable object perception and robot manipulation control the results achieved within RoDyMan and propose cause for reflection of future developments. The RoDyMan project culminating with this book is meant as a tribute to Naples, the hosting city of the project, an avant-garde city in robotics technology, automation, gastronomy, and art culture.
Autism Spectrum Disorder (ASD) can cause significant social, communication and behavioural challenges. Introducing Therapeutic Robotics for Autism is the first book to explore the use of Robot Assisted Therapies (RAT) for children with ASD. Raheel Nawaz and Sara Ali present a holistic picture, exploring state-of-the-art robot assisted therapies available for supporting children with ASD, the impact of various robot assisted therapies on different communication skills, and challenges with robotic therapies. The book concludes with policy recommendations for parents, psychologists, therapists, and roboticists working in the domain. Written accessibly from the user's perspective, Introducing Therapeutic Robotics for Autism is a must read for researchers from related disciplinary backgrounds including robotics, educational psychology, cognitive sciences, and ASD.
Takes an interdisciplinary approach to contribute to the ongoing development of human-AI interaction. Current debate and development of AI is "algorithm-driven" or technical-oriented in lieu of human-centered. At present, there is no systematic interdisciplinary discussion to effectively deal with issues and challenges arising from AI. This book offers critical analysis of the logic and social implications of algorithmic processes. Reporting from the processes of scientific research, the results can be useful for understanding the relationship between algorithms and humans, allowing AI designers to assess the quality of the meaningful interactions with AI systems.
A famous French writer, Anatole France, liked to say, "The future is a convenient place to position our dreams" (1927). Indeed, this remark gains full meaning when one considers the history of what we call today "Robotics." For more than 3000 years, mankind has dreamt ofthe possibility of arti ficial machines that would have all the advantages of human slaves without any of their drawbacks. With the developments in technology since the end of World War II, mainly with the explosive progress of computers, it was thought we might at last succeed in transforming this everlasting dream into reality. In the mind of scientists of the 1950's, to make such intelligent and autonomous machines before the year 2000 seemed a small challenge: it was obvious, thanks to computers and Artificial Intelligence. But, in spite of progress in some directions, we must admit that the dream remains a dream and that the basic problems denying us a successful issue are not solved. In fact, if we except industrial robots, only calling for classical automata theory, the main advanced result concerning autonomous and intelligent machines is related to some understanding of reasons why we have failed during the past years."
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also verified experimentally. It collects contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the Ninth ISER held in Singapore.
This book presents the proceedings of the 6th IFToMM Asian Mechanisms and Machine Science Conference (Asian MMS), held in Hanoi, Vietnam on December 15-18, 2021. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
This book presents the state of the art in distributed autonomous systems composed of multiple robots, robotic modules, or robotic agents. Swarms in nature can not only adapt to their environments, but can also construct suitable habitats to their own advantage. Distributed autonomous robotic systems can do many things that its individuals cannot do alone. As the global pandemic was still ongoing, the 15th International Symposium on Distributed Autonomous Robotic Systems (DARS2021) was held on June 1-4, 2021, as an online meeting. The scope of DARS201 was to create a bridge between biologists and engineers interested in the distributed intelligence of living things and to establish a new academic field by integrating knowledge from both disciplines. Topics of DARS2021 were swarm intelligence, swarm robotics, multi-agent system, modular robotics, decentralized control, distributed system, etc. The papers in this book provide a very good overview of the state of the art in distributed autonomous robotic systems (DARS). They reflect current research themes in DARS with important contributions. We hope that this book helps to sustain the interest in DARS and triggers new research.
Artificial intelligence and related technologies are changing both the law and the legal profession. In particular, technological advances in fields ranging from machine learning to more advanced robots, including sensors, virtual realities, algorithms, bots, drones, self-driving cars, and more sophisticated "human-like" robots are creating new and previously unimagined challenges for regulators. These advances also give rise to new opportunities for legal professionals to make efficiency gains in the delivery of legal services. With the exponential growth of such technologies, radical disruption seems likely to accelerate in the near future. This collection brings together a series of contributions by leading scholars in the newly emerging field of artificial intelligence, robotics, and the law. The aim of the book is to enrich legal debates on the social meaning and impact of this type of technology. The distinctive feature of the contributions presented in this edition is that they address the impact of these technological developments in a number of different fields of law and from the perspective of diverse jurisdictions. Moreover, the authors utilize insights from multiple related disciplines, in particular social theory and philosophy, in order to better understand and address the legal challenges created by AI. Therefore, the book will contribute to interdisciplinary debates on disruptive new AI technologies and the law.
This book addresses problems in the modeling, detection, and control of emergent behaviors and task coordination in multiagent systems. It presents a unified solution to such problems in terms of distributed estimation, distributed control, and optimization of interaction topologies and dynamics. Four aspects of the technical solutions in the book are presented: First, the impact of interaction dynamics on the convergence conditions related to interaction topologies is discussed, utilizing a discontinuous cooperative control algorithm of updated design. Second, distributed least-squares and Kalman filtering algorithms for agents with limited interactions are elaborated upon. Third, a general framework of distributed nonlinear control is established, and distributed adaptive control for nonlinear systems with more general uncertainties is presented. Based on the proposed framework, a distributed nonlinear controller is designed to deal with task coordination of robotic systems with nonholonomic constraints. Finally, the problem of optimal multiagent task coordination is addressed and solutions based on approximate dynamic programming and approximate distributed gradient estimation are presented. Emergent Behavior Detection and Task Coordination for Multiagent Systems is of interest to practicing engineers in areas such as robotics and cyber-physical systems, researchers in the field of systems, controls, and robotics, and senior undergraduate and graduate students.
This book illustrates the main characteristics, challenges and optimisation requirements of robotic disassembly. It provides a comprehensive insight on two crucial optimisation problems in the areas of robotic disassembly through a group of unified mathematical models. The online and offline optimisation of the operational sequence to dismantle a product, for example, is represented with a list of conflicting objectives and constraints. It allows the decision maker and the robots to match the situation automatically and efficiently. To identify a generic solution under different circumstances, classical metaheuristics that can be used for the optimisation of robotic disassembly are introduced in detail. A flexible framework is then presented to implement existing metaheuristics for sequence planning and line balancing in the circumstance of robotic disassembly. Optimisation of Robotic Disassembly for Remanufacturing provides practical case studies on typical product instances to help practitioners design efficient robotic disassembly with minimal manual operation, and offers comparisons of the state-of-the-art metaheuristics on solving the key optimisation problems. Therefore, it will be of interest to engineers, researchers, and postgraduate students in the area of remanufacturing.
"Compensating for Quasi-periodic Motion in Robotic Radiosurgery"
outlines the techniques needed to accurately track and compensate
for respiratory and pulsatory motion during robotic radiosurgery.
The algorithms presented within the book aid in the treatment of
tumors that move during respiration.
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource.
This book focuses on artifi cial intelligence in the field of digital signal processing and wireless communication. The implementation of machine learning and deep learning in audio, image, and video processing is presented, while adaptive signal processing and biomedical signal processing are also explored through DL algorithms, as well as 5G and green communication. Finally, metaheuristic algorithms of related mathematical problems are explored.
The topics covered in this book range from modeling and programming languages and environments, via approaches for design and verification, to issues of ethics and regulation. In terms of techniques, there are results on model-based engineering, product lines, mission specification, component-based development, simulation, testing, and proof. Applications range from manufacturing to service robots, to autonomous vehicles, and even robots than evolve in the real world. A final chapter summarizes issues on ethics and regulation based on discussions from a panel of experts. The origin of this book is a two-day event, entitled RoboSoft, that took place in November 2019, in London. Organized with the generous support of the Royal Academy of Engineering and the University of York, UK, RoboSoft brought together more than 100 scientists, engineers and practitioners from all over the world, representing 70 international institutions. The intended readership includes researchers and practitioners with all levels of experience interested in working in the area of robotics, and software engineering more generally. The chapters are all self-contained, include explanations of the core concepts, and finish with a discussion of directions for further work. Chapters 'Towards Autonomous Robot Evolution', 'Composition, Separation of Roles and Model-Driven Approaches as Enabler of a Robotics Software Ecosystem' and 'Verifiable Autonomy and Responsible Robotics' are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The use of small unoccupied aerial systems (sUAS) for acquiring close-range remotely sensed data has substantially increased in the past 5 years. A primary focus of early research was on physical systems and photogrammetric techniques. However, as sUAS technology continues to improve and more sophisticated payloads are utilized, such as lidar and multispectral cameras, applications have expanded to nearly all subdisciplines within Geography. This edited volume is intended to showcase the various ways in which sUAS are used in geographic research, including geomorphology, environmental and hazard monitoring, biogeography, and urban and sociocultural geography.
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
This book is dedicated for engineers and researchers who would like to increase the knowledge in area of mobile mapping systems. Therefore, the flow of the derived information is divided into subproblems corresponding to certain mobile mapping data and related observations' equations. The proposed methodology is not fulfilling all SLAM aspects evident in the literature, but it is based on the experience within the context of the pragmatic and realistic applications. Thus, it can be supportive information for those who are familiar with SLAM and would like to have broader overview in the subject. The novelty is a complete and interdisciplinary methodology for large-scale mobile mapping applications. The contribution is a set of programming examples available as supportive complementary material for this book. All observation equations are implemented, and for each, the programming example is provided. The programming examples are simple C++ implementations that can be elaborated by students or engineers; therefore, the experience in coding is not mandatory. Moreover, since the implementation does not require many additional external programming libraries, it can be easily integrated with any mobile mapping framework. Finally, the purpose of this book is to collect all necessary observation equations and solvers to build computational system capable providing large-scale maps.
This monograph presents the development of novel model-based methodologies for engineering self-organized and self-assembled systems. The work bridges the gap between statistical mechanics and control theory by tackling a number of challenges for a class of distributed systems involving a specific type of constitutive components, namely referred to as Smart Minimal Particles. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities.
This book draws inspiration from natural shepherding, whereby a farmer utilizes sheepdogs to herd sheep, to inspire a scalable and inherently human friendly approach to swarm control. The book discusses advanced artificial intelligence (AI) approaches needed to design smart robotic shepherding agents capable of controlling biological swarms or robotic swarms of unmanned vehicles. These smart shepherding agents are described with the techniques applicable to the control of Unmanned X Vehicles (UxVs) including air (unmanned aerial vehicles or UAVs), ground (unmanned ground vehicles or UGVs), underwater (unmanned underwater vehicles or UUVs), and on the surface of water (unmanned surface vehicles or USVs). This book proposes how smart 'shepherds' could be designed and used to guide a swarm of UxVs to achieve a goal while ameliorating typical communication bandwidth issues that arise in the control of multi agent systems. The book covers a wide range of topics ranging from the design of deep reinforcement learning models for shepherding a swarm, transparency in swarm guidance, and ontology-guided learning, to the design of smart swarm guidance methods for shepherding with UGVs and UAVs. The book extends the discussion to human-swarm teaming by looking into the real-time analysis of human data during human-swarm interaction, the concept of trust for human-swarm teaming, and the design of activity recognition systems for shepherding. Presents a comprehensive look at human-swarm teaming; Tackles artificial intelligence techniques for swarm guidance; Provides artificial intelligence techniques for real-time human performance analysis.
This book is a collection of scienti c papers presented at the German Workshop on Robotics-a convention of researchers from academia and industry working on mathematical and algorithmic foundations of robotics, on the design and ana- sis of robotic systems as well as on robotic applications. As a new event of the Deutsche Gesellschaft fur .. Robotik (DGR, German Robotics Society), the workshop took place at the Technische Universitat .. Carolo-Wilhelmina zu Braunschweig on June 9-10, 2009. Covering some of the most important ongoing robotics research topics, this v- ume contains 31 carefully selected and discussed contributions. All of them were presented at the workshop that was attended by 80 researchers representing a wide range of research areas within robotics. The papers are organized in ten scienti c tracks: Kinematic and Dynamic Modeling, Motion Generation, Sensor Integration, Robot Vision, Robot Programming, Humanoid Robots, Grasping, Medical Rob- ics, AutonomousHelicopters,andRobotApplications.Two invitedtalksbyAntonio Bicchi and Atsuo Takanishi presented surveys of research activities in the elds of human-robotinteraction and humanoid robotics. The Program Committee was comprised of Karsten Berns, Oliver Brock, W- fram Burgard, Martin Buss, Thomas Christaller, Ru ..diger Dillmann, Bernd Fin- meyer, Martin Hagel .. e, Bodo Heimann, Dominik Henrich, Gerd Hirzinger, Alois Knoll, Helge-Bjorn .. Kuntze, Gisbert Lawitzky, Jur .. gen Rossmann, Roland Siegwart, Markus Vincze, and Heinz Worn...After an extensive review and discussion process, the committee met at February 17, 2009, and composed the scienti c program from a pool of 49 submissions.
This book systematically presents the most recent progress in stability and control of impulsive systems with delays. Impulsive systems have recently attracted continued high research interests because they provide a natural framework for mathematical modeling of many real-world processes. It focuses not only on impulsive delayed systems, but also impulsive systems with delayed impulses and impulsive systems with event-triggered mechanism, including their Lyapunov stability, finite-time stability and input-to-state stability synthesis. Special attention is paid to the bilateral effects of the delayed impulses, where comprehensive stability properties are discussed in the framework of time-dependent and state-dependent delays. New original work with event-triggered impulsive control and its applications in multi-agent systems and collective dynamics are also provided. This book will be of use to specialists who are interested in the theory of impulsive differential equations and impulsive control theory, as well as high technology specialists who work in the fields of complex networks and applied mathematics. Also, instructors teaching graduate courses and graduate students will find this book a valuable source of nonlinear system theory.
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications. |
You may like...
Lundy's Best Walks in the Cape Peninsula
Tim Lundy, Mike Lundy
Paperback
|