![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science
The Space Shuttle has been the dominant machine in the U.S. space program for thirty years and has generated a great deal of interest among space enthusiasts and engineers. This book enables readers to understand its technical systems in greater depth than they have been able to do so before. The author describes the structures and systems of the Space Shuttle, and then follows a typical mission, explaining how the structures and systems were used in the launch, orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Many photographs and technical drawings illustrate how the Space Shuttle functions, avoiding the use of complicated technical jargon. The book is divided into two sections: Part 1 describes each subsystem in a technical style, supported by diagrams, technical drawings, and photographs to enable a better understanding of the concepts. Part 2 examines different flight phases, from liftoff to landing. Technical material has been obtained from NASA as well as from other forums and specialists. Author Davide Sivolella is an aerospace engineer with a life-long interest in space and is ideally qualified to interpret technical manuals for a wider audience. This book provides comprehensive coverage of the topic including the evolution of given subsystems, reviewing the different configurations, and focusing on the solutions implemented.
This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the Kurchatov Atomic Energy Institute (S. V. Antipov, A. S. Trubnikov, AYu. Rylov, AV. Khutoretsky) and astrophysics theoreticians from the Astronomical Council of the USSR Academy of Sciences (AM. Frid man) and from the Volgograd State University (AG. Morozov). To all of them we wish to express our gratitude. Whenever we speak of "our experiments," the participation of the entire team is implied."
Laser physics and nonlinear optics are fields which have been intimately con nected from their beginning. Nonlinear optical effects such as second-har monic generation fulfil vital functions in many laser systems. Conversely advances in laser development quickly lead to progress in nonlinear optics. Of particular importance has been the development of tunable visible and uv lasers. With the ability to tune the laser frequency into close resonance with atomic transition frequencies, one can produce a large resonance en hancement of the nonlinearity. This permits the observation of a great var iety of nonlinear optical processes in dilute media such as atomic vapours. In recent years much of the research effort in nonlinear optics has been directed towards the use of such media, and it is this area which forms the subject of the present book. We review a wide range of nonlinear optical processes in atomic vapours, molecular gases and cryogenic liquids. At the same time we have tried to treat the subject in sufficient depth to be useful to research workers in the field. To achieve this, a measure of selectivity has been introduced by emphasising those nonlinear processes which are seen to have applications as sources of tunable coherent radiation. Thus we have not discussed in any detail those nonlinear processes whose main applications are in spec troscopy, such as Doppler-free two-photon absorption."
An outgrowth of the first Asia-Pacific Regional School on the International Heliophysical Year (IHY), this volume contains a collection of review articles describing the universal physical processes in the heliospace influenced by solar electromagnetic and mass emissions. The Sun affects the heliosphere in the short term (space weather) and in the long term (space climate) through numerous physical processes that exhibit similarities in various spatial domains of the heliosphere. The articles take into account various aspects of the Sun-heliosphere connection under a systems approach. This volume will serve as a ready reference work for research in the emerging field of heliophysics, which describes the physical processes taking place in the physical space controlled by the Sun out to the local interstellar medium.
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind."
On attending a conference on the Jovian satellites at UCLA, I heard Lou Lanze rotti vigorously present the exciting data on the sputtering of water ice by Me V protons taken with W. L. Brown at AT&T Bell Labs. In his inimitable way he made clear that this new electronic sputtering process was very poorly under stood and was very important for surface properties of sattelites. I was immedia tely hooked, and have been working ever since with Lanzerotti, Brown, my col league at Virginia, John Boring, and Bo Sundqvist at Uppsala on understanding the ejection of material from surfaces and applying laboratory results to intere sting planetary problems. In the course of writing this book I also had the benefit of spending a semester with the Planetary Geosciences group in Hawaii, thanks to Tom McCord, a period of time with Doug Nash at JPL, and a period ot time with the group at Catania. The book was started with the encouragement of Lou Lanzerotti. The writing has gone slowly as the field has been changing rapidly. Even now I feel it is incom plete, as the interesting Halley dust data have just recently been interpreted in detail, Voyager has recently visited Neptune, and the data on Pluto are rapidly improving. However, most of the principles for plasma ion alteration of surfaces and gases have been established allowing, I hope, a coherent and useful frame work for incorporating both new laboratory and planetary data."
The discovery of the ?rst case of superluminal radio jets in our galaxy in 1994 from the bright and peculiar X-ray source GRS 1915+105 has opened the way to a major shift in the direction of studies of stellar-mass accreting binaries. The past decade has seen an impressive increase in multi-wavelength studies. It is now known that all black hole binaries in our galaxy are radio sources and most likely their radio emission originates from a powerful jet. In addition to the spectacular events related to the ejection of superluminal jets, steady jets are known from many systems. Compared with their supermassive cousins, the nuclei of active galaxies, stellar-mass X-ray binaries have the advantage of varying on time scales accessible within a human life (sometimes even much shorter than a second). This has led to the ?rst detailed studies of the relation between accretion and ejection. It is even possible that, excluding their "soft" periods, the majority of the power in gal- tic sources lies in the jets and not in the accretion ?ows. This means that until a few years ago we were struggling with a physical problem, accretion onto compact objects, without considering one of the most important components of the system. Models that associate part of the high-energy emission and even the fast aperiodic variability to the jet itself are now being proposed and jets can no longer be ignored.
This volume includes original papers presented at the 4th Symposium on Satellite Dynamics held at the XII Annual Plenary Meeting of COSPAR. At a time where it might be thought that very few problems were left un solved in celestial mechanics, we discover that new and more challenging questions must be answered. The pre cision of observations reaches the centimeter level and physical phenomena which had been disregarded come into play. We need a better treatment of atmospheric drag, radiation forces, and a better knowledge of the earth's gravitational field. Time has to be precisely defined as well as reference systems, including improved values for precision and nutation. The question of resonances introduced by nonzonal harmonics was to be carefully in vestigated. Numerical integration techniques must be optimized and means of controlling their errors improved. Analytical techniques must be made appropriate for com puter processing. Presently existing methods of solu tions of differential equations of interest to celestial mechanics are getting cumbersome as all these new facts come to light. It is clear that entirely new and more effective methods are necessary. These methods must, among other requirements, take into account the essential nonlinear character of the equations. Finally, the mo tion about the center of mass of a satellite is becoming an essential need for the thorough understanding and de scription of the orbital motion."
"The Soyuz Launch Vehicle" tells the story, for the first time in a single English-language book, of the extremely successful Soyuz launch vehicle. Built as the world's first intercontinental ballistic missile (ICBM), Soyuz was adapted to launch not only Sputnik but also the first man to orbit Earth, and has been in service for over fifty years in a variety of forms. It has launched all Soviet manned spacecraft and is now the only means of reaching the International Space Station. It was also the workhorse for launching satellites and space probes and has recently been given a second life in French Guiana, fulfilling a commercial role in a joint venture with France. No other launch vehicle has had such a long and illustrious history. This remarkable book gives a complete and accurate description of the two lives of Soyuz, chronicling the recent cooperative space endeavors of Europe and Russia. The book is presented in two parts: Christian Lardier chronicles the "first life" in Russia while Stefan Barensky explores its "second life," covering Starsem, the Franco-Russian company and implementation of technology for the French Guiana Space Agency by ESA. Part One has been developed from Russian sources, providing a descriptive approach to very technical issues. The second part of the book tells the contemporary story of the second life of Soyuz, gathered from Western sources and interviews with key protagonists. "The Soyuz Launch Vehicle" is a detailed description of a formidable human adventure, with its political, technical, and commercial ramifications. At a time when a new order was taking shape in the space sector, the players being the United States, Russia, Europe and Asia, and when economic difficulties sometimes made it tempting to give up, this book reminds us that in the global sector, nothing is impossible.
"Remote Sensing"provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.
Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.
This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.
Astronomers learn much of what they know about the mass, brightness, and size of stars by observing binary systems, in which two stars orbit each other, periodically cutting off the others light. This book provides astronomers with a guide to specifying an astrophysical model for a set of observations, selecting an algorithm to determine the parameters of the model, and estimating the errors of the parameters.
This book develops a credible scenario for interstellar exploration
and colonization. In so doing, it examines:
Astronomical jets are key astrophysical phenomena observed in gamma-ray bursts, active galactic nuclei or young stars. Research on them has largely occurred within the domains of astronomical observations, astrophysical modeling and numerical simulations, but the recent advent of high energy density facilities has added experimental control to jet studies. Front-line research on jet launching and collimation requires a highly interdisciplinary approach and an elevated level of sophistication. Bridging the gaps between pure magnetohydrodynamics, thermo-chemical evolution, high angular resolution spectro-imaging and laboratory experiments is no small matter. This volume strives to bridge those very gaps. It offers a series of lectures which, taken as whole, act as a thorough reference for the foundations of this discipline. These lectures address the following: * laboratory jets physics from laser and z-pinch plasma experiments, * the magnetohydrodynamic theory of relativistic and non-relativistic stationary jets, * heating mechanisms in magnetohydrodynamic jets, from the solar magnetic reconnection to the molecular shock heating perspectives, * atomic and molecular microphysics of jet shocked material. In addition to the lectures, the book offers, in closing, a presentation of a series of observational diagnostics, thus allowing for the recovery of basic physical quantities from jet emission lines.
This book provides an overview of key topics related to space business and management. Case studies and an integrative section are included to illustrate the fundamental concepts and to build intuition. Key topics in the field, such as risk management and cost management, are covered in detail.
The mounting problem of space debris in low earth orbit and its threat to the operation of application satellites has been increasingly recognized as space activities increase. The efforts of the Inter Agency Space Debris Coordinating Committee (IADC) and UN COPUS have now led to international guidelines to mitigate the creation of new debris. This book discusses the technical studies being developed for active removal processes and otherwise mitigating problems of space debris, particularly in low earth orbit. This book also considers threats to space systems and the Earth that comes from natural causes such as asteroids, coronal mass ejections, and radiation. After more than half a century of space applications and explorations, the time has come to consider ways to provide sustainability for long-term space activities.
Physics of the Inner Heliosphere gives for the first time a comprehensive and complete summary of our knowledge of the inner solar system. Using data collected over more than 11 years by the HELIOS twin solar probes, one of the most successful ventures in unmanned space exploration, the authors have compiled six extensive reviews of the physical processes of the inner heliosphere and their relation to the solar atmosphere. Researchers and advanced students in space and plasma physics, astronomy, and solar physics will be surprised to see just how closely the heliosphere is tied to, and how sensitively it depends on, the sun. Volume 2 deals with particles, waves, and turbulence, with chapters on: - magnetic clouds - interplanetary clouds - the solar wind plasma and MHD turbulence - waves and instabilities - energetic particles in the inner solar system
The 1985/86 apparition of Halley's Comet turned out to be the most important apparition of a comet ever. It provided a worldwide science community with a wealth of exciting new discoveries, the most remarkable of which was undoubtedly the first image of a cometary nucleus. Halley's Comet is the brightest periodic comet, and the most famous of the 750 known comets. With its 76-year period, its recent appearance was truly a "once-in-a-lifetime" observational opportunity. The 1985/86 apparition was the thirtieth consecutive recorded apparition. Five apparitions ago, the English astronomer Edmond Halley discovered the periodicity of "his" comet and correctly predicted its return in 1758, a triumph for science best appreciated in the context of contemporary views, or rather fears, about comets at that time. The increasingly rapid progress in technological development is very much apparent when one compares the dominant tools for cometary research during Halley's next three apparitions: in 1835 studies were made based on drawings ofthe comet; in 1910 photographic plates were used; while in March 1986 an armada of six spacecraft from four space agencies approached the comet and carried out in situ measurements, 1 AU from the Earth. In 1910, nobody could have dreamed that this was possible, and today it is equally difficult to anticipate what scientists will be able to achieve in 2061.
This monograph is concerned with the fundamentals of up-to-date geo metrical optics treated as an approximate method of wave theory. Geometrical optics has changed dramatically over the last two decades. Primarily, it has acquired a number of novel disciplines: space-time geo metrical optics, the quasi-isotropic approximation, the modern theory of caustics related to catastrophe theory, and perturbation techniques for rays, to name only a few. Another acquisition is the reliable boundaries of appli cability for geometrical optics, based upon the concept of the Fresnel volume for a ray. These recent additions to the field are the focus of dis cussion in the book. We did not attempt to separate study-oriented and illustrative material from that intended for professionals, but rather we spread it throughout the text to facilitate for the reader the mastering of this attractive, intuitively appealing and efficient ray method. In preparing the manuscript we used a set of lecture notes devised for All-Union Schools on Diffraction and Wave Propagation, published in Rus sian. Sections 2.1-4,6 and 10 result from joint efforts of both authors. The other material of the book we wrote separately. I contributed Sects. 2.5,9 and 3.17 and Chap.4; Yu.l. Orlov prepared the rest. Unfortunately, he could not take part in the preparation of the English edition, as he died in 1982 at the age of 41, on the verge of what would have been great achieve ments considering his strong and original talent."
"Sky Alert! What Happens When Satellites Fail" explores for the first time what our modern world would be like if we were suddenly to lose most, if not all, of our space assets. The author demonstrates humankind's dependence on space satellites and show what might happen to various aspects of our economy, defense, and daily lives if they were suddenly destroyed. The book opens with a consideration of how our space assets might be lost in the first place: through orbital debris, war, and solar storms. The author then looks at what would happen if our satellites were lost, including the effect on weather forecasting, and the Global Positioning System, explaining GPS in detail and its importance to the military, including spy satellites and military reconnaissance, commerce, civilians, communications and remote sensing - both resource monitoring and locating and environmental monitoring and science. The effects of losing such assets as the International Space Station as well as such research satellites as the Hubble Space Telescope or the Chandra X-Ray Observatory are also considered. Part III of the book looks at how we can protect our satellites, preparing for the worst, reducing the growth and amount of orbital debris, preventing acts of war in space and hardening against space radiation. The book ends on an optimistic note: most spacefaring nations are now working together to develop new technologies to reduce the threat posed by orbital debris and in-space nuclear detonations and treaties exist to limit the development and use of weapons in space. Finally, it is hoped that it will not be long before we will be able to better predict and take precautions against solar storms. The global economy has now become so dependent upon satellites that their loss would be devastating - to the economy, to national security, and potentially, to the day-to-day survival of those who live in the world's most advanced economies.
This volume comprises selected lectures presented in the Ninth Course of the International School ofCosmic-Ray Astrophysics held at the Ettore Majorana Centre in Erice, Sicily, May 7-18,1994. Director ofthe Centre is A. Zichichi, assisted by M. Zaini. Director ofthe School is M. M. Shapiro. 1. P. Wefel was co-director of the Ninth Course, which was also a NATO Advanced Study Institute (ASI), and NATO support is gratefully acknowledged. Devoted to problems and prospects in high-energy astrophysics and cosmology, the major areas explored in this course were: gamma-ray, X-ray, and neutrino astronomies; cosmic rays; pulsars and supernova remnants; and cosmology, as well as cosmogony. Among the principal developments in gamma-ray astrophysics were those generated by the Compton Gamma Ray Observatory. Cosmic neutrinos at MeV energies, i.e., those from the sun and from Supernova 1987a, were discussed, as well as neutrino masses in astrophysics. The source composition ofcosmic rays, and extensive air shower experiments, received special attention. The early universe according to COBE data, and as viewed by theorists ofcosmology, was reviewed. Finally, the connections with particle physics occasioned a timely description ofthe Standard Model ofelementary particles.
The aim of this book is to describe contemporary analytical and semi analytical techniques for solving typical celestial-mechanics problems. The word "techniques" is used here as a term intermediate between "methods" and "recipes." One often conceives some method of solution of a problem as a general mathematical tool, while not taking much care with its computa tional realization. On the other hand, the word "recipes" may nowadays be understood in the sense of the well-known book Numerical Recipes (Press et al., 1992), where it means both algorithms and their specific program realiza tion in Fortran, C or Pascal. Analytical recipes imply the use of some general or specialized computer algebra system (CAS). The number of different CAS currently employed in celestial mechanics is too large to specify just a few of the most preferable systems. Besides, it seems reasonable not to mix the essence of any algorithm with its particular program implementation. For these reasons, the analytical techniques of this book are to be regarded as algorithms to be implemented in different ways depending on the hardware and software available. The book was preceded by Analytical Algorithms of Celestial Mechanics by the same author, published in Russian in 1980. In spite of there being much common between these books, the present one is in fact a new mono graph."
As this excellent book demonstrates, the study of comets has now reached the fas cinating stage where we understand comets in general simple tenns while, at the same time, we are uncertain about practically all the details of cometary nature, structure, processes, and origin. In every aspect, even including dynamics, a choice among several or many competing theories is made impossible simply by the lack of detailed knowledge. The space missions, snapshot studies of two comets, partic ularly the one that immortalizes the name of Sir Edmund Halley, have produced a huge mass of valuable new infonnation and a number of surprises. Nonetheless, we face the tantalizing realization that we have obtained only a fleeting glance at two of perhaps a hundred billion (lOll) or more comets with possibly differing natures, origins, and physical histories. To my personal satisfaction, comets seem to have discrete nuclei made up of dirty snowballs, as I concluded four decades ago, but perhaps they are more like frozen rubbish piles.
Lectures on Non-linear Plasma Kinetics is an introduction to modern non-linear plasma physics showing how many of the techniques of modern non-linear physics find applications in plasma physics and how, in turn, the results of this research find applications in astrophysics. Emphasis is given to explaining the physics of nonlinear processes and the radical change of cross-sections by collective effects. The author discusses new nonlinear phenomena involving the excitation of coherent nonlinear structures and the dynamics of their random motions in relation to new self-organization processes. He also gives a detailed description of applications of the general theory to various research fields, including the interaction of powerful radiation with matter, controlled thermonuclear research, etc. |
You may like...
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R4,841
Discovery Miles 48 410
Spacecraft Formation Flying - Dynamics…
Kyle T. Alfriend, Srinivas R. Vadali, …
Hardcover
R2,545
Discovery Miles 25 450
A Research Agenda for Space Policy
Kai-Uwe Schrogl, Christina Giannopapa, …
Hardcover
R3,921
Discovery Miles 39 210
|