Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Other technologies > Space science
Like planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial chemical composition of the exoplanet atmosphere. This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable. This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions. Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation
Saturn is back in the news! The Cassini/Huygens spacecraft, a joint venture by NASA and the European Space Agency, is on its way to Saturn, where it will arrive in July 2004. During 2005 it will explore beneath the clouds of Titan, Saturn's largest moon and potential home for extraterrestrial life. Written by an established space historian and experienced author, Mission To Saturn - Cassini and the Huygens Probe is an up-to-date and timely review of our knowledge of Saturn and its enigmatic moon, Titan, on which the Huygens probe will land to search for prebiotic chemistry or even life. It explains how the mission was planned, how it will operate and, as the spacecraft nears its target, puts into context the discoveries that are sure to follow from this once-in-a-lifetime mission.
One day, humans will travel to Mars... This book tells you everything you would need to know about a trip to the red planet. From essential preparations for your journey, through to the local climate and landscape, things to do, places to visit and the background, culture and natural history of the latest `must-visit' destination for mankind. Activities for your holiday could include anything from sandboarding to hiking up Olympus Mons and from glacier ice trekking to a visit to the magnificent oxygen factories of the Tharsis Bulge. Also included are special features such as lists of `What Not To Miss', `Top Ten Favourite Excursions', and `What To Do On a 2-Day Visit or a 7-Day Visit.' In the next few years, the dream of a journey to Mars may become a reality... Get ready ahead of the rush with this invaluable guide.
Embark on an awe-inspiring and informative journey through our Solar System and beyond in this illuminating astronomy book! Discover how big the Universe is, why our view of the sky is constantly changing, what came before the Big Bang, and so much more. 3, 2, 1, blast off! Inside the pages of this comprehensive guide to astronomy for beginners, you'll discover: - Simple text and step-by-step graphics make astronomy easy to understand - Fun facts and tip-of-the-tongue questions are presented through bite-sized factoids and question-and-answer features - Clear explanations demystifying more advanced topics such as cosmic rays, dark matter, and black hole collisions An out-of-this-world reference book about space that introduces you to the weird and wonderful world of astronomy and space exploration. From the structure of the Milky Way to the Earth's nearest celestial body, the Moon, How Space Works takes you on an unforgettable tour through the stars and galaxies, and to the furthest reaches of space! Answering all your burning questions about space, from ancient white dwarf stars to the Mars Rover, this visual guide explains the basics of astronomy through bold graphics and step-by-step artworks. It's the ultimate book for armchair astronomers and space-technology enthusiasts looking for reliable and up-to-date facts and explanations. DK's How Things Work series uses dynamic graphics and jargon-free text to explain the modern world simply and clearly. Packed with fascinating facts and stats, these visual guides cover everything from science to philosophy, making complex topics more accessible than ever before!
At the intersection of astronautics, computer science, and social science, this book introduces the challenges and insights associated with computer simulation of human society in outer space, and of the dynamics of terrestrial enthusiasm for space exploration. Never before have so many dynamic representations of space-related social systems existed, some deeply analyzing the logical implications of social-scientific theories, and others open for experience by the general public as computer-generated virtual worlds. Fascinating software ranges from multi-agent artificial intelligence models of civilization, to space-oriented massively multiplayer online games, to educational programs suitable for schools or even for the world's space exploration agencies. At the present time, when actual forays by humans into space are scarce, computer simulations of space societies are an excellent way to prepare for a renaissance of exploration beyond the bounds of Earth.
This book addresses space science and communication - one of the main pillars of space science sustainability, an area that has recently become of great importance. In this regard, research and development play a crucial role in sustainability development. However, obtaining essential data in the physical world to interpret the universe and to predict what could happen in the future is a challenging undertaking. Accordingly, providing valid information to understand trends, evaluate needs, and create sustainable development policies and programs in the best interest of all the people is indispensable. This book was prepared in conjunction with the fifth meeting of the 2017 International Conference on Space Science and Communication (IconSpace2017), held in Kuala Lumpur, Malaysia on 3-5 May 2017 to introduce graduate stuandents, researchers, lecturers, engineers, geospatialists, meteorologists, climatologists, astronomers and practitioners to the latest applications of space science, telecommunications, meteorology, remote sensing and related fields. The individual papers discuss a broad range of space science and technology applications, e.g. the formation of global warming from space, environmental and remote sensing, communication systems, and smart materials for space applications.
This book describes and contextualises collisionless plasma theory, and in particular collisionless plasma equilibria. The Vlasov-Maxwell theory of collisionless plasmas is an increasingly important tool for modern plasma physics research: our ability to sustain plasma in a steady-state, and to mitigate instabilities, determines the success of thermonuclear fusion power plants on Earth; and our understanding of plasma aids in the prediction and mitigation of Space Weather effects on terrestrial environments and satellites. Further afield, magnetic reconnection is a ubiquitous energy release mechanism throughout the Universe, and modern satellites are now able to make in-situ measurements with kinetic scale resolution. To keep pace with these challenges and technological developments, a modern scientific discussion of plasma physics must enhance, and exploit, its 'literacy' in kinetic theory. For example, accurate analytical calculations and computer simulations of kinetic instabilities are predicated on a knowledge of Vlasov-Maxwell equilibria as an initial condition. This book highlights new fundamental work on Vlasov-Maxwell equilibria, of potential interest to mathematicians and physicists alike. Possible applications involve two of the most significant magnetic structures known to confine plasma and store energy: current sheets and flux tubes.
A lively and engaging exploration of orbital mechanics and its role
in aerospace design and development Inspired by its author's
internationally renowned short course by the same name, Orbital
Mechanics is a practical introduction to a field of study of
crucial importance to today's aerospace initiatives. Drawing upon
nearly four decades of experience as an aerospace engineer and
student of orbital mechanics, Tom Logsdon provides aerospace
professionals and students with many important and useful insights
into the ways in which orbiting bodies interact and the behavior of
satellites and rockets traveling through space. From the
investigations of Renaissance astronomers to contemporary
trajectory control systems, Logsdon covers all the bases,
including:
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
This Festschrift dedicated to the 60th birth anniversary of Prof. Sandip K. Chakrabarti, a well-known Indian astrophysicist, presents a collection of contributions by about fifty scientists who work on diverse topics in contemporary astrophysics and space science including new and low-cost balloon borne experiments, planetary science, astrochemistry and the origin of life, ionospheric research and earthquake predictions, relativistic astrophysics around black holes, and finally, the observational signatures and radiative properties of compact objects. All the authors are well known scholars in their respective subject and are all PhD students of Prof. Sandip K. Chakrabarti. The book demonstrates a two-dimensional evolution of research areas triggered by Sandip Chakrabarti over the past few decades. The first dimension represents the evolution and diversification of Chakrabarti's own research in which new students were trained. A second dimension arises from the evolution of the research topics pursued by Chakrabarti's fifty odd doctoral students, many of whom have become renowned scientists in their own right, after starting with a certain subject under Chakrabarti and then migrating to completely new subjects with dexterity. The editors have compiled and edited the articles appropriately to some extent to suit the spirit of this Festschrift on the one hand and to keep balance in diverse topics on the other. Thus this volume also provides an overview for whosoever wishes to enter the important subjects of compact objects, astrochemistry, ionospheric science or space exploration in near space. New graduates, PhD scholars, teachers and researchers will benefit from this volume. Moreover it is a record of tremendous success of a school in a range of vast topics.
This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons. For the third edition, updates was made throughout each existing chapter, and two new chapters were added; Ch 9 on "Special Plasmas" and Ch 10 on Plasma Applications (including Atmospheric Plasmas).
This monograph is a detailed study, and systematic defence, of the Growing Block Theory of time (GBT), first conceived by C.D. Broad. The book offers a coherent, logically perspicuous and ideologically lean formulation of GBT, defends it against the most notorious objections to be found in the extant philosophical literature, and shows how it can be derived from a more general theory, consistent with relativistic spacetime, on the pre-relativistic assumption of an absolute and total temporal order. The authors devise axiomatizations of GBT and its competitors which, against the backdrop of a shared quantified tense logic, significantly improves the prospects of their comparative assessment. Importantly, neither of these axiomatizations involves commitment to properties of presentness, pastness or futurity. The authors proceed to address, and defuse, a number of objections that have been marshaled against GBT, including the so-called epistemic objection according to which the theory invites skepticism about our temporal location. The challenge posed by relativistic physics is met head-on, by replacing claims about temporal variation by claims about variation across spacetime. The book aims to achieve the greatest possible rigor. The background logic is set out in detail, as are the principles governing the notions of precedence and temporal location. The authors likewise devise a novel spacetime logic suited for the articulation, and comparative assessment, of relativistic theories of time. The book comes with three technical appendices which include soundness and completeness proofs for the systems corresponding to GBT and its competitors, in both their pre-relativistic and relativistic forms. The book is primarily directed at researchers and graduate students working on the philosophy of time or temporal logic, but is of interest to metaphysicians and philosophical logicians more generally.
This thesis develops and establishes several methods to determine the detailed geometric architecture of transiting exoplanetary systems (planets orbiting around, and periodically passing in front of, stars other than the sun) using high-precision photometric data collected by the Kepler space telescope. It highlights the measurement of stellar obliquity - the tilt of the stellar equator with respect to the planetary orbital plane(s) - and presents methods for more precise obliquity measurements in individual systems of particular interest, as well as for measurements in systems that have been out of reach of previous methods. Such information is useful for investigating the dynamical evolution of the planetary orbit, which is the key to understanding the diverse architecture of exoplanetary systems. The thesis also demonstrates a wide range of unique applications of high-precision photometric data, which expand the capability of future space-based photometry.
Why do nation states choose to develop national space programs? How can they justify national efforts to acquire capabilities by arguing for membership of the space club? This book provides a unique perspective of the past, current and future of space exploration and technological development in world politics. A country that sees itself as a power deserving of a seat at the table of world governance is expected to race for space. Based on a rich and detailed analysis of a range of space programs of states which are not usually at the focus of world politics and its research, the author shows that joining the space club is a legitimate and rational decision. The book provides a different way of looking at international relations, through a relatively under-studied area of policy - the space club.
One of the most powerful questions we ask about the cosmos is: Are we alone? The Possibility of Life traces the history of our understanding of what and where life in the universe could be, from Galileo and Copernicus through to our current tracking of exoplanets in the Goldilocks zone, where life akin to ours on Earth might exist. Along the way, Jaime Green studies insights from a long tradition of science fiction that uses imagination to extrapolate and construct worlds, in turn inspiring scientists and their research. Bringing together expert interviews, cutting-edge astronomy, philosophical inquiry and pop culture touchstones ranging from A Wrinkle in Time to Star Trek, The Possibility of Life delves into our evolving conception of the cosmos to pose an even deeper question: what does it mean to be human?
What stories, mysteries and secrets can you find in the stars? A wonderful illustrated tour of the night sky for children aged 5+ years. Lara Hawthorne's beautiful illustrations take the reader on one of the most fascinating journeys that humankind has ever made and one that is common to us all. From ancient Egyptians building the pyramids, to early Polynesian sailors criss-crossing the Pacific Ocean, and astronauts travelling into space, the night sky has guided and inspired people across the world, and throughout time. Now it's your turn to look to the skies and discover the mysteries they hide. For fans of Usborne's Big Books of Stars and Planets and Dr Emily Grossman's World-Whizzing Facts!
The proceedings published in this book document and foster the goals of the 11th International Space Conference on "Protection of Materials and Structures from Space Environment" ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.
This book summarizes what is currently known about gravity sensing and response mechanisms in microorganisms, fungi, lower and higher plants; starting from the historical eye-opening experiments from the 19th century up to today's extremely rapid advancing cellular, molecular and biotechnological research. All forms of life are constantly exposed to gravity and it can be assumed that almost all organisms have developed sensors and respond in one way or the other to the unidirectional acceleration force,this books shows us some of these different ways. The book is written for plant biologists and microbiologists as well as scientists interested in space and gravitational biology.
This book is an informal autobiography by John West MD PhD. He obtained his medical degree in Adelaide, Australia and then spent 15 years mainly at the Royal Postgraduate Medical School, Hammersmith Hospital in London where he, with others, used radioactive oxygen-15 to make the first description of the uneven regional distribution of blood flow in the lung. In 1960-1961, he was a member of the Himalayan Scientific and Mountaineering Expedition led by Sir Edmund Hillary who had made the first ascent of Mt Everest 7 years before. During the expedition about 6 scientists spent up to three months at an altitude of 5800 m studying the effects of this very high altitude on human physiology. Because of his interests in the effects of gravity on the lung, Dr. West spent a year at the NASA Ames Research Center in Mountain View, California in 1967-1968. While there he submitted a proposal to NASA to measure pulmonary function of astronauts in space, and this was funded. Later, in 1981 he organized the American Medical Research Expedition to Everest during which the first measurements of human physiology on the summit, altitude 8848 m, were obtained. In the 1990's, Dr. West's team made the first comprehensive measurements of pulmonary function of astronauts in space using SpaceLab which was taken up in the Shuttle.
This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.
This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most important space missions are documented through event covers and cards canceled at launch sites, tracking stations, research laboratories, and mission control facilities.
The Production and consumption of alcohol has played a significant role in human society since the dawn of civilization. Will this still hold true when humanity is exploring and Settling the outer reaches of space? This first book on the topic examines the history of alcohol in space, as well as dozens of companies and projects that are exploring the possibilities of interstellar alcohol Production. Covering the long history of alcohol in human society, how alcohol has been addressed in science fiction, and space agriculture technologies, this book investigates a broad sweep of questions that bear on the manufacture of alcohol in space, as well as human space Settlement in general.
The book introduces readers to the concept of weightlessness and microgravity, and presents several examples of microgravity research in fluid physics, the material sciences and human physiology. Further, it explains a range of basic physical concepts (inertia, reference frames, mass and weight, accelerations, gravitation and weightiness, free fall, trajectories, and platforms for microgravity research) in simple terms. The last section addresses the physiological effects of weightlessness. The book's simple didactic approach makes it easy to read: equations are kept to a minimum, while examples and applications are presented in the appendices. Simple sketches and photos from actual space missions illustrate the main content. This book allows readers to understand the space environment that astronauts experience on board space stations, and to more closely follow on-going and future space missions in Earth orbit and to Mars.
This book develops a general approach that can be systematically refined to investigate the statics and dynamics of deformable solid bodies. These methods are then employed to small bodies in the Solar System. With several space missions underway and more being planned, interest in our immediate neighbourhood is growing. In this spirit, this book investigates various phenomena encountered in planetary science, including disruptions during planetary fly-bys, equilibrium shapes and stability of small rubble bodies, and spin-driven shape changes. The flexible procedure proposed here will help readers gain valuable insights into the mechanics of solar system bodies, while at the same time complementing numerical investigations. The technique itself is built upon the virial method successfully employed by Chandrasekhar (1969) to study the equilibrium shapes of spinning fluid objects. However, here Chandrasekhar's approach is modified in order to study more complex dynamical situations and include objects of different rheologies, e.g., granular aggregates, or "rubble piles". The book is largely self-contained, though some basic familiarity with continuum mechanics will be beneficial. |
You may like...
A Research Agenda for Space Policy
Kai-Uwe Schrogl, Christina Giannopapa, …
Hardcover
R3,318
Discovery Miles 33 180
Movement And Maneuver In Deep Space - A…
Brian E Hans, Christopher D Jefferson, …
Hardcover
R502
Discovery Miles 5 020
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,008
Discovery Miles 10 080
The Sun - Beginner's Guide To Our Local…
Dr. Ryan French, Royal Observatory Greenwich, …
Paperback
R194
Discovery Miles 1 940
|