![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Other technologies > Space science
On 20 July 1969, US astronauts Neil Armstrong and Buzz Aldrin became the first men to walk on the moon. NASA Mission AS-506 Apollo 11 Owners' Workshop Manual is the story of the Apollo 11 mission and the 'space hardware' that made it all possible. This manual looks at the evolution and design of the mighty Saturn V rocket, the Command and Service Modules, and the Lunar Module. It describes the space suits worn by the crew and their special life support and communications systems. We learn about how the Apollo 11 mission was flown - from launch procedures to 'flying' the Saturn V and the 'LEM', and from moon walking to the earth re-entry procedure. This new edition of the book celebrates the 50th Anniversary of the Apollo 11 moon landing.
Like planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial chemical composition of the exoplanet atmosphere. This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable. This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions. Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
Inside the epic quest to find life on the water-rich moons at the outer reaches of the solar system Where is the best place to find life beyond Earth? We often look to Mars as the most promising site in our solar system, but recent scientific missions have revealed that some of the most habitable real estate may actually lie farther away. Beneath the frozen crusts of several of the small, ice-covered moons of Jupiter and Saturn lurk vast oceans that may have existed for as long as Earth, and together may contain more than fifty times its total volume of liquid water. Could there be organisms living in their depths? Alien Oceans reveals the science behind the thrilling quest to find out. Kevin Peter Hand is one of today's leading NASA scientists, and his pioneering research has taken him on expeditions around the world. In this captivating account of scientific discovery, he brings together insights from planetary science, biology, and the adventures of scientists like himself to explain how we know that oceans exist within moons of the outer solar system, like Europa, Titan, and Enceladus. He shows how the exploration of Earth's oceans is informing our understanding of the potential habitability of these icy moons, and draws lessons from what we have learned about the origins of life on our own planet to consider how life could arise on these distant worlds. Alien Oceans describes what lies ahead in our search for life in our solar system and beyond, setting the stage for the transformative discoveries that may await us.
A lively and engaging exploration of orbital mechanics and its role
in aerospace design and development Inspired by its author's
internationally renowned short course by the same name, Orbital
Mechanics is a practical introduction to a field of study of
crucial importance to today's aerospace initiatives. Drawing upon
nearly four decades of experience as an aerospace engineer and
student of orbital mechanics, Tom Logsdon provides aerospace
professionals and students with many important and useful insights
into the ways in which orbiting bodies interact and the behavior of
satellites and rockets traveling through space. From the
investigations of Renaissance astronomers to contemporary
trajectory control systems, Logsdon covers all the bases,
including:
This monograph addresses the legal and policy issues relating to the commercial exploitation of natural resources in outer space. It begins by establishing the economic necessity and technical feasibility of space mining today, an estimate of the financial commitments required, followed by a risk analysis of a commercial mining venture in space, identifying the economic and legal risks. This leads to the recognition that the legal risks must be minimised to enable such projects to be financed. This is followed by a discussion of the principles of international space law, particularly dealing with state responsibility and international liability, as well as some of the issues arising from space mining activities. Much detail is devoted to the analysis of the content of the common heritage of mankind doctrine. The monograph then attempts to balance such interests in creating a legal and policy compromise to create a new regulatory regime.
This book summarizes what is currently known about gravity sensing and response mechanisms in microorganisms, fungi, lower and higher plants; starting from the historical eye-opening experiments from the 19th century up to today's extremely rapid advancing cellular, molecular and biotechnological research. All forms of life are constantly exposed to gravity and it can be assumed that almost all organisms have developed sensors and respond in one way or the other to the unidirectional acceleration force,this books shows us some of these different ways. The book is written for plant biologists and microbiologists as well as scientists interested in space and gravitational biology.
The book introduces readers to the concept of weightlessness and microgravity, and presents several examples of microgravity research in fluid physics, the material sciences and human physiology. Further, it explains a range of basic physical concepts (inertia, reference frames, mass and weight, accelerations, gravitation and weightiness, free fall, trajectories, and platforms for microgravity research) in simple terms. The last section addresses the physiological effects of weightlessness. The book's simple didactic approach makes it easy to read: equations are kept to a minimum, while examples and applications are presented in the appendices. Simple sketches and photos from actual space missions illustrate the main content. This book allows readers to understand the space environment that astronauts experience on board space stations, and to more closely follow on-going and future space missions in Earth orbit and to Mars.
Failure is always an option... For more than 50 years, NASA's Mission Control has been known for two things: perfect decision making in extreme situations and producing generations of steely-eyed missile men and women who continue that tradition. A key to that legacy of brilliant performance is a particular brand of leadership, especially at the working level in Mission Control. Take the ultimate insiders look at the leadership values and culture that created the best team on this planet. Paul Sean Hill was responsible for NASA's Mission Operations support for manned space flight from 2007-2011. In this candid book he shows that the secret to Mission Control's success has never been rocket science and that the real practice of perfect decision making can be applied to any organisation or team. By demonstrating how his Mission Control team nurtured a culture which has delivered impossible wins for decades, Hill provides a guide for all leaders to boost their company's performance at all levels. Whether failure means cost and schedule overruns, quality reduction, loss of market share, bankruptcy - or putting someone's life a risk, how we lead can determine whether even small mistakes are dealt with or are left to snowball out of control and destroy an enterprise. Discover how to take leadership from the Mission Control Room to your boardroom and beyond, and achieve this out-of-this-world leadership environment in your team.
Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation
Outstanding Academic Title, 1991, Choice Magazine Although building a space station has been an extraordinary challenge for America's scientists and engineers, the securing and sustaining of presidential approval, congressional support, and long-term funding for the project was an enormous task for bureaucrats. The Space Station Decision examines the history of this controversial initiative and illustrates how bureaucracy shapes public policy. Using primary documents and interviews, Howard E. McCurdy describes the events that led up to the 1984 decision to build a permanently occupied, international space station in low Earth orbit. As he follows the trail of the space station proposal through the labyrinth of White House policy review, McCurdy explains the evolution of the presidential budget review process, the breakup of the cabinet system, the proliferation of subcabinets and Executive Office interagency, the involvement of White House staff in framing issues for presidential review, and the role of bureaucracy in advancing administration legislation on Capitol Hill. Comparing the space station decision to earlier decisions to go to the moon and to build the space shuttle, McCurdy shows how public officials responsible for long-term science and technology policy maneuvered in a political system that demanded short-term flexibility.
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether's first theorem. The advected invariants are related to fluid relabeling symmetries - so-called diffeomorphisms associated with the Lagrangian map - and are obtained by applying the Euler-Poincare approach to Noether's second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels' theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman's direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfven simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.
Manned space programs attract the most media attention, and it is not hard to understand why: the danger, the heroism, the sheer adventure we as earthbound observers can imagine when humans are involved. But robotic missions deserve a respectful and detailed history and analysis of their own, and this book provides it. Instead of describing one specific spacecraft or mission, Michel van Pelt offers a "behind the scenes" look at the life of a space probe from its first conceptual design to the analysis of the scientific data returned by the spacecraft.
A fascinating look at extraterrestrial volcanoes in our Solar System. The volcano - among the most familiar and perhaps the most terrifying of all geological phenomena. However, Earth isn't the only planet to harbour volcanoes. In fact, the Solar System, and probably the entire Universe, is littered with them. Our own Moon, which is now a dormant piece of rock, had lava flowing across its surface billions of years ago, while Mars can be credited with the largest volcano in the Solar System, Olympus Mons, which stands 25km high. While Mars's volcanoes are long dead, volcanic activity continues in almost every other corner of the Solar System, in the most unexpected of locations. We tend to think of Earth volcanoes as erupting hot, molten lava and emitting huge, billowing clouds of incandescent ash. However, it isn't necessarily the same across the rest of the Solar System. For a start, some volcanoes aren't even particularly hot. Those on Pluto, for example, erupt an icy slush of substances such as water, methane, nitrogen or ammonia, that freeze to form ice mountains as hard as rock. While others, like the volcanoes on one of Jupiter's moons, Io, erupt the hottest lavas in the Solar System onto a surface covered in a frosty coating of sulphur. Whether they are formed of fire or ice, volcanoes are of huge importance for scientists trying to picture the inner workings of a planet or moon. Volcanoes dredge up materials from the otherwise inaccessible depths and helpfully deliver them to the surface. The way in which they erupt, and the products they generate, can even help scientists ponder bigger questions on the possibility of life elsewhere in the Solar System. Fire and Ice is an exploration of the Solar System's volcanoes, from the highest peaks of Mars to the intensely inhospitable surface of Venus and the red-hot summits of Io, to the coldest, seemingly dormant icy carapaces of Enceladus and Europa, an unusual look at how these cosmic features are made, and whether such active planetary systems might host life.
Choice Highly Recommended Title, January 2020 This special edition of Apollo in Perspective marks the 50th anniversary of the Apollo 11 Moon landing in 1969. Updated and revised throughout, it takes a retrospective look at the Apollo space program and the technology that was used to land a man on the Moon. In addition, there is a new chapter looking forward to the future of contemporary spaceflight in returning to the Moon (project Artemis) and going on to Mars. Using simple illustrations and school-level mathematics, it explains the basic physics and technology of spaceflight, from how rockets work to the dynamics of orbits and how to simulate gravity in a rotating spacecraft. A mathematical appendix shows how some of the formulas can be derived. This is an excellent introduction to astronautics for anyone interested in space and spaceflight. Features: Accessible, written in a friendly and informal style Contains real-world examples Updated throughout, with new chapters on the Apollo missions and the immediate future of human spaceflight From the Foreword "I am sure there is a woman or a man alive today who will land on the Moon and on Mars. This book will certainly help them be ready for such a journey. Most importantly, it explains not only what happened 50 years ago, but how the Apollo missions happened, and the science that is required to do it again, or to go further, to Mars. If the reader is younger, still in school and perhaps considering the sciences, this book will introduce ideas that will help you choose the subjects to study which can help you to make your space travel a reality. For others, the book will be an exciting and thought provoking read that gives a vision of the near future in space, which all of us on planet Earth will be able to enjoy as the adventure unfolds."- Michael Foale, CBE, former-NASA astronaut
Afterword by Professor Stephen Hawking "Reads like a thriller - and reveals many secrets... one of the great entrepreneurial stories of our time" (Washington Post) From the age of eight, when he watched Apollo 11 land on the Moon, Peter Diamandis's singular goal was to get to space. When he realized NASA was winding down manned space flight, he set out on one of the great entrepreneurial adventure stories of our time. If the government wouldn't send him to space, he would create a private space flight industry himself. In the 1990s, this idea was the stuff of science fiction. Undaunted, Diamandis found inspiration in the golden age of aviation. He discovered that Charles Lindbergh made his transatlantic flight to win a $25,000 prize. The flight made Lindbergh the most famous man on earth and galvanized the airline industry. Why, Diamandis thought, couldn't the same be done for space flight? The story of the bullet-shaped SpaceShipOne, and the other teams in the hunt for a $10 million prize is an extraordinary tale of making the impossible possible. In the end, as Diamandis dreamed, the result wasn't just a victory for one team; it was the foundation for a new industry.
This short book grapples with two vast questions: the nature of our minds, and our place in the wider universe. It considers how one mutually influences the development of the other. The changes and challenges that will accompany the first humans to leave Earth and travel to another planet, or even further, will not only impact our technical capabilities, but will also represent a watershed moment within our individual and collective human psychology. Many of the problems of resource use, environmental degradation, and waste or destructive processes are contained in the larger process of exploring another environment and planet. But This book also offers a shift in perspective that allows us to consider humanity from an alternative, more holistic perspective, reappraising our own minds both individually and within dynamic social processes. The Psychology of Space Exploration considers our place and purpose in the widest possible perspective, that of space exploration and the natural universe. It doesn't seek to answer these questions, but provides a perspective to explore even further.
The awe-inspiring history of humanity told through our relationship with stars and the night sky. 'Excellent . . . This books makes you rethink the traditional story of the history of astronomy . . . Effortlessly readable.' BBC Sky at Night 'Stuart Clark's picture of the yawning gaps in our understanding of the cosmos is fuller than most.' Nature From the Stone Age to the Space Age, Stuart Clark explores a fascination shared across the world, one that has unequivocally shaped us as civilisations and as individuals, housing our hopes and fears. In the stars, we can see our past - and ultimately, our fate.
This volume documents the contributions presented at the Seventh Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de AstronomÃa, SEA). The event bought together 301 participants who presented 161 contributed talks and 120 posters, the greatest number of contributions in the history of the meeting. The fact that most exciting items of the current astronomical research were addressed in the meeting is proof of the good health of the SEA, a consolidated organization founded fifteen years ago in Barcelona.
The Production and consumption of alcohol has played a significant role in human society since the dawn of civilization. Will this still hold true when humanity is exploring and Settling the outer reaches of space? This first book on the topic examines the history of alcohol in space, as well as dozens of companies and projects that are exploring the possibilities of interstellar alcohol Production. Covering the long history of alcohol in human society, how alcohol has been addressed in science fiction, and space agriculture technologies, this book investigates a broad sweep of questions that bear on the manufacture of alcohol in space, as well as human space Settlement in general.
In Magnitude, Kimberly Arcand and Megan Watzke take us on an expansive journey to the limits of size, mass, distance, time, and temperature in our universe, from the tiniest particle within the structure of an atom to the most massive galaxy in the universe; from the speed at which grass grows (about 2 to 6 inches a month) to the speed of light. Fully-illustrated with four-color drawings and infographics throughout and organized into sections including Size and Amount (Distance, Area, Volume, Mass, Time, Temperature), Motion and Rate (Speed, Acceleration, Density, Rotation), and Phenomena and Processes (Energy, Pressure, Sound, Wind, Computation), Magnitude shows us the scale of our world in a clear, visual way that our relatively medium-sized human brains can easily understand.
This book addresses the problems of Geocosmos and provides a snapshot of the current research in a broad area of Earth Sciences carried out in Russia and elsewhere. The themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology, geoelectricity, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is the largest forum of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.
This book presents the best contributions of the the Third International Symposium on Solar Sailing Glasgow, 11 - 13 June 2013. It is a rapid snap-shot of the state-of-the art of solar sail technology in 2013 across the globe, capturing flight programs, technology development programs and new technology and application concepts. The book contains contributions from all of the leading figures in the field, including NASA, JAXA, ESA & DLR as well as university and industry experts. It therefore provides a unique reference point for the solar sail technology. The book also includes key contributions from the prospective users of solar sail technology, which will allow the technology to be considered by the user in this unique context.
This work presents a study of methods useful for modeling and understanding dynamical systems in the Galaxy. A natural coordinate system for the study of dynamical systems is the angle-action coordinate system. New methods for the approximation of the action-angle variables in general potentials are presented and discussed. These new tools are applied to the construction of dynamical models for two of the Galaxy’s components: tidal streams and the Galactic disc. Tidal streams are remnants of tidally stripped satellites in the Milky Way that experience the effects of the large scale structure of the Galactic gravitational potential, while the Galactic disc provides insights into the nature of the Galaxy near the Sun. Appropriate action-based models are presented and discussed for these components, and extended to include further information such as the metallicity of stars.
A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many exoplanets in similarly close orbits about their stars. Mercury generates its own magnetic field, like the Earth (but unlike Venus, Mars and the Moon), and the interplay between Mercury's and the Sun's magnetic field affects many processes on its surface and in the rich and diverse exosphere of neutral and charged particles surrounding the planet. There is much about Mercury that we still don't understand. Accessible to the amateur, but also a handy state-of-the-art digest for students and researchers, the book shows how our knowledge of Mercury developed over the past century of ground-based, fly-by and orbital observations, and looks ahead at the mysteries remaining for future missions to explore. |
You may like...
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Magnetospheric Imaging - Understanding…
Yaireska M Collado-Vega, Dennis Gallagher, …
Paperback
R3,045
Discovery Miles 30 450
Modern Spacecraft Guidance, Navigation…
Vincenzo Pesce, Andrea Colagrossi, …
Paperback
R5,061
Discovery Miles 50 610
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
Electrostatic Dust Mitigation and…
Nima Gharib, Javad Farrokhi Derakhshandeh, …
Paperback
R3,581
Discovery Miles 35 810
Spacecraft Formation Flying - Dynamics…
Kyle T. Alfriend, Srinivas R. Vadali, …
Hardcover
R2,545
Discovery Miles 25 450
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R4,841
Discovery Miles 48 410
|