![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Space science
Brings together for the first time details of the technology available and being developed to provide totally reusable launch vehicles for the future exploitation and exploration of space.
Navigation in Space by X-ray Pulsars will consist of two parts. One is on modeling of X-ray pulsar signals. The second part explains how X-ray pulsar signals can be used to solve the relative navigation problem. This book formulates the problem, proposes a recursive solution, and analyzes different aspects of the navigation system. This book will be a comprehensive source for researchers. It provides new research results on signal processing techniques needed for X-ray pulsar based navigation in deep space.
This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, included the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.
"Fault Detection and Isolation: Multi-Vehicle Unmanned System" deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. "Fault Detection and Isolation: Multi-Vehicle Unmanned System" is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.
In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and management of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This fourth volume in the series covers the period 2004 to the present day and features: coverage of the Rosetta and Curiosity missions up to the end of 2013 coverage of Mars missions since 2005, including the Mars Reconnaissance Orbiter, Phoenix and Fobos-Grunt, plus a description of plans for future robotic exploration of the Red Planet coverage of all planetary missions launched between 2004 and 2013, including the Deep Impact cometary mission, the MESSENGER Mercury orbiter, the New Horizons Pluto flyby and the Juno Jupiter orbiter the first complete description of the Chinese Chang'e 2 asteroid flyby mission ever published extensive coverage of future missions, including the European BepiColombo Mercury orbiter and international plans to revisit the most interesting moons of Jupiter and Saturn.
Many important observational clues about our understanding of how stars and planets form in the interior of molecular clouds have been amassed using recent technological developments. ESO's very large telescope promises to be a major step forward in the investigation of stellar nurseries and infant stars. This volume collects papers from the leaders in this very timely field of astrophysical research. It presents theoretical and a host of observational results and many papers show the plans for future observations.
This symposium was dedicated to science opportunities with the VLT. All major areas of astronomical research were discussed in the plenary sessions, ranging from where we stand in cosmology to the new frontiers in the solar system. The workshops published in this volume focussed on different ways of finding clusters of galaxies at high redshift, on gravitational lensing by distant compact clusters, on the use of stellar populations as distance, age or abundance indicators, and on the extraordinary progress made in the discovery of extrasolar planets. This book affords a glimpse of what will be at the center of astrophysical research in the forthcoming decade. It is addressed to researchers and graduate students.
The field of ultraviolet astronomy offers unequalled scientific promise yet has not been blessed with a multitude of space missions (as has been the case for other spectral domains). This book contains a distillation of the community's views on the topic and the desires for future observational facilities. As such, it provides the most up-to-date information on the topic of ultraviolet astronomy from a very broad point of view, presenting a compilation of lectures given at a specialist meeting and combining theoretical arguments with observational reports and detailed instrumental information.
Nanodust and nanometer-sized structures are important components of many objects in space. Nanodust is observed in evolved stars, young stellar objects, protoplanetary disks, and dust debris disks. Within the solar system, nanodust is observed with in-situ experiments from spacecraft. Nanometer-sized substructures are found in the collected cometary and interplanetary dust particles and in meteorites. Understanding the growth and destruction of dust, its internal evolution, as well as the optical properties and the detection of nanoparticles is of fundamental importance for astrophysical research. This book provides a focused description of the current state of research and experimental results concerning nanodust in the solar system. It addresses three major questions: What is nanodust? How was it discovered in the solar system? And how do we interpret the observations? The book serves as a self-contained reference work for space researchers and provides solid information on nanodust in cosmic environments for researchers working in astrophysics or in other fields of physics.
For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.
On-orbit operations optimization among multiple cooperative or noncooperative spacecraft, which is often challenged by tight constraints and shifting parameters, has grown to be a hot issue in recent years. The authors of this book summarize related optimization problems into four planning categories: spacecraft multi-mission planning, far-range orbital maneuver planning, proximity relative motion planning and multi-spacecraft coordinated planning. The authors then formulate models, introduce optimization methods, and investigate simulation cases that address problems in these four categories. This text will serve as a quick reference for engineers, graduate students, postgraduates in the fields of optimization research and on-orbit operation mission planning.
over to nominal operations and began making our groundbreaking science observations. Remarkably, the IBEX project was able to do all this work including developing an entirely new launch capability, building and ying a unique and highly specialized spacecraft and instrument suite, and maintaining full funding for our Education and Public Outreach and Phase E science activities, while still under-running our original cost cap (as modi ed by NASA-directed changes), by roughly three-quarters of a million dollars. This book comprises a set of papers that describe the IBEX science, instruments, and mission and put these in the context of the existing knowledge of the interstellar interaction at the time of the launch. The book sets the stage for research that will be based on data from the IBEX mission. We sincerely hope that future researchers, authors and students will use this information to help in their studies. Chapter 1 [McComas et al. ] provides an overview of the entire IBEX program including the IBEX science, hardware, and mission. Chapter 2 describes the IBEX spacecraft and ight system [Scherrer et al. ]. Chapters 3-4 provide the details of the IBEX-Hi instrument [Funsten et al. ] and background monitor that is built into it [Allegrini et al. ], while Chapters 5-7 describe the IBEX-Lo instrument [Fuselier et al. ], how IBEX-Lo can measure the interstellar neutrals directly entering the heliosphere [Moebius et al.
It is well known that stellar winds are variable, and the fluctuations are often cyclical in nature. This property seems to be shared by the winds of cool and hot stars, even though their outflows are driven by fundamentally different physical mechanisms. Since very similar models have been proposed to explain the cyclical wind variations observed in a wide variety of stars, the time was ripe for astrophysicists from many different sub-disciplines to present the state of the art in a concise form. The proceedings will provide a useful, up-to-date overview of the observations, interpretation, and modelling of the time-dependent mass outflows from all sorts of stars.
This monograph addresses the legal and policy issues relating to the commercial exploitation of natural resources in outer space. It begins by establishing the economic necessity and technical feasibility of space mining today, an estimate of the financial commitments required, followed by a risk analysis of a commercial mining venture in space, identifying the economic and legal risks. This leads to the recognition that the legal risks must be minimised to enable such projects to be financed. This is followed by a discussion of the principles of international space law, particularly dealing with state responsibility and international liability, as well as some of the issues arising from space mining activities. Much detail is devoted to the analysis of the content of the common heritage of mankind doctrine. The monograph then attempts to balance such interests in creating a legal and policy compromise to create a new regulatory regime.
This volume is dedicated to the Solar Dynamics Observatory (SDO), which was launched 11 February 2010. The articles focus on the spacecraft and its instruments: the Atmospheric Imaging Assembly (AIA), the Extreme Ultraviolet Variability Experiment (EVE), and the Helioseismic and Magnetic Imager (HMI). Articles within also describe calibration results and data processing pipelines that are critical to understanding the data and products, concluding with a description of the successful Education and Public Outreach activities. This book is geared towards anyone interested in using the unprecedented data from SDO, whether for fundamental heliophysics research, space weather modeling and forecasting, or educational purposes. Previously published in Solar Physics journal, Vol. 275/1-2, 2012. Selected articles in this book are published open access under a CC BY-NC 2.5 license at link.springer.com. For further details, please see the license information in the chapters.
After pioneering this technology and growing the market, COMSAT fell prey to changes in government policy and to its own lack of entrepreneurial talent. The author explores the factors which contributed to this rise and fall of COMSAT.
This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun's atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun's magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield. Dick has been making profound contributions to these areas of research over a long and productive scientific career. Many of the articles in this topical issue were first presented as talks during this workshop and represent substantial original work. The workshop was held 9 - 11 August 2010, at the Center Green campus of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. This volume is aimed at researchers and graduate students active in solar physics, solar-terrestrial physics and magneto-hydrodynamics. Previously published in Solar Physics journal, Vol. 277/1, 2012.
This is a fair overview of the basic problems in Solar Physics. The authors address not only the physics that is well understood but also discuss many open questions. The lecturers' involvement in the SOHO mission guarantees a modern and up-to-date analysis of observational data and makes this volume an extremely valuable source for further research.
The definition of all space systems starts with the establishment of its fundamental parameters: requirements to be fulfilled, overall system and satellite design, analysis and design of the critical elements, developmental approach, cost, and schedule. There are only a few texts covering early design of space systems and none of them has been specifically dedicated to it. Furthermore all existing space engineering books concentrate on analysis. None of them deal with space system synthesis - with the interrelations between all the elements of the space system. Introduction to Space Systems concentrates on understanding the interaction between all the forces, both technical and non-technical, which influence the definition of a space system. This book refers to the entire system: space and ground segments, mission objectives as well as to cost, risk, and mission success probabilities. Introduction to Space Systems is divided into two parts. The first part analyzes the process of space system design in an abstract way. The second part of the book focuses on concrete aspects of the space system design process. It concentrates on interactions between design decisions and uses past design examples to illustrate these interactions. The idea is for the reader to acquire a good insight in what is a good design by analyzing these past designs.
Space is a world devoid of the things we need to live and thrive: air, gravity, hot showers, fresh produce, privacy, beer. Space exploration is in some ways an exploration of what it means to be human. How much can a person give up? How much weirdness can they take? What happens to you when you can t walk for a year? have sex? smell flowers? What happens if you vomit in your helmet during a space walk? Is it possible for the human body to survive a bailout at 17,000 miles per hour? To answer these questions, space agencies set up all manner of quizzical and startlingly bizarre space simulations. As Mary Roach discovers, it s possible to preview space without ever leaving Earth. From the space shuttle training toilet to a crash test of NASA s new space capsule (cadaver filling in for astronaut), Roach takes us on a surreally entertaining trip into the science of life in space and space on Earth.
Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.
The first Catalogue of Meteorites from South America includes new specimens never previously reported, while doubtful cases and pseudometeorites have been deliberately omitted. The falling of these objects is a random event, but the sites where old meteorites are found tend to be focused in certain areas, e.g. in the deflation surfaces in Chile s Atacama Desert, due to favorable climate conditions and ablation processes. Our Catalogue provides basic information on each specimen like its provenance and the place where it was discovered (in geographic co-ordinates and with illustrative maps), its official name, its classification type (class, and if applicable, weathering grade and shock stage), if it was seen falling or was found by chance, its total mass or weight, the institution where it is held, and the most important bibliographic references about it. "
Why did support for the space program decrease so sharply after (or, really, even before) the first moon landing? Clearly this decline had much to do with the waning of the original Cold War impetus that had sparked the moon program to begin with. As Cold War tensions with the Soviets eased by the late 1960s, and the United States won the space race with the successful moon landing, there was little incentive to continue to expand or even maintain steady funding for a program that, for all its real contributions to technological advancement, entertainment, and national esteem, had largely come to be seen as a Cold War goal rather than a continuing, sustained program of space exploration. In this context, which a good number of Americans accepted, the moon was not a starting point for a glorious era of exploration, but an endpoint in a Cold War race with the Soviets. Unusual works on space history, this fluidly written debut book looks at the Apollo moon landings in the late 1960s and early 1970s from a cultural perspective. Rather than examining them in their familiar Cold War context, Matt Tribbe uses them to explore larger trends in American culture and society during this period, specifically the turn away from the rationalism that dominated social thought through the 1950s and early 1960s and found its fullest expression in the urge to go to the moon. Rather than studying the space program itself, he focuses more on the peculiarities of an American society and culture that sent men to the moon semiannually over the 1968-72 period, and then stopped. Hippies used the event to comment on the lameness of "straights," straights to lambast hippies. Intellectuals on the Left discussed it in their critiques of American society and culture; intellectuals on the Right discussed it in their critiques of intellectuals on the Left. Those who placed their faith in technocratic rationalism praised it as a triumph of rational planning, while growing numbers of skeptics pointed out the spiritual emptiness of such a rationalist endeavor. The "man in the street," of course, had something to say as well, and he or she expressed a wide variety of views in countless newspapers and television interviews. Meanwhile, armchair philosophers of all stripes, from newspaper editorialists to politicians to NASA technocrats, waxed poetically about what it revealed of "the nature of man" and "mankind's destiny." While not a traditional space history, this book will appeal to those fascinated by postwar culture and society and will particularly add to the growing area of the history of the 1970s.
Space exploration and commercial activity off-world has its skeptics as well as its enthusiasts. What does seem to be clear, however, is that such activity has increased and is set to expand further, and dramatically so, during the present century. This book explores some of the ethical issues which have already started to arise and it explores the prospects for our medium-range future: Can terraforming of other worlds succeed? Would it be defensible? Should there be limits to mining in space? Do lifeless planets have an 'integrity' which we ought to respect? Could indigenous micro-bacteria have any special intrinsic value? Do we have a duty to extend human life? The text then moves onto a treatment of the ethics of sending world-ships on inter-stellar journeys and the unpredictable risks associated with seeding other worlds with rudimentary forms of life. Throughout, the book is as much about our humanity as it is about space. (And here, a shared humanity is not reducible to species membership.) It concludes with an attempt to explore the connection between our belonging to a single home planet and our sense of belonging to a single moral community.
|
![]() ![]() You may like...
Hayabusa2 Asteroid Sample Return Mission…
Masatoshi Hirabayashi
Paperback
R3,307
Discovery Miles 33 070
Spacecraft Formation Flying - Dynamics…
Kyle T. Alfriend, Srinivas R. Vadali, …
Hardcover
R2,630
Discovery Miles 26 300
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R5,024
Discovery Miles 50 240
A Research Agenda for Space Policy
Kai-Uwe Schrogl, Christina Giannopapa, …
Hardcover
R3,568
Discovery Miles 35 680
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,504
Discovery Miles 15 040
Risk Assessment in Air Traffic…
Javier Alberto Perez Castan, Alvaro Rodriguez Sanz
Hardcover
R3,398
Discovery Miles 33 980
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,466
Discovery Miles 34 660
|