![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Space science
For the very first time, this book provides updated, integrated and organized, theoretical and methodological information on regional climate change and the associated environmental and socio-economic impacts on a regional scale. The most recent findings in the field of long-term climate change, which improve our understanding of the global climate puzzle, will be presented. Readers are introduced to state-of-the-art research in downscaling and GCMs, which involve the construction of reliable regional climate scenarios and the solution to key problems regarding the assessment of the impacts of climate change in the most important geographical areas of the world, from the Arctic to Antarctic regions, with special emphasis on the Northern Hemisphere.
This volume contains the Proceedings of the Fifth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidad de Castilla La Mancha in Toledo, from September 9 to 13, 2002. The event brought together 219 participants who pre sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (122 and 64, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As tronomy and Astrophysics for the period 2000-2001 ex aequo to Dr. A. Zurita and Dr. E. Villaver. This is the second time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidad de Castilla La Mancha, and, in particular, to the San Pedro Martir staff, for its hospitality. It is also indebted to the Local Organizing Committee for its dedication and the good atmosphere that prevailed at any moment, and to the Scientific Organizing Committee for its excel lent work."
Planetary nebulae are the classic subject of astrophysics. The physical pro cesses occurring in this highly ionized gaseous medium, the formation of emis sion lines in clearly specified conditions, the continuous emission extending from the far ultraviolet up to infrared and radio frequencies, the generation of exotic forms of radiation predicted by atomic physics, along with methods for deciphering the observed spectra and detecting physical and kinematic parameters of the radiating medium, etc. - all these problems form the solid foundations of the physical theory of gaseous nebulae. They are an essential part of the arsenal of powerful tools and concepts without which one cannot imagine understanding and interpreting the enormous diversity of processes taking place in the Universe - in gaseous envelopes surrounding the stars of various classes, from cool dwarfs and flare stars up to hot supergiants, as well as in stellar chromospheres and coronae, in atmospheres of unstable and anomalous stars, in circumstellar clouds and gaseous shells born in nova and supernova explosions, in diffuse nebulae and the interstellar medium, in interacting binary systems, in galaxies with emission lines, in quasars, etc. The last thirty years have seen a turning-point in our knowledge concern ing the very nature of planetary nebulae (PNs). The radio emission of PNs was discovered after it was predicted theoretically. On the other hand, the powerful infrared emission discovered both in the continuum and in emission lines was never expected."
Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.
Andrew F. Nagy Originally published in the journal Space Science Reviews, Volume 139, Nos 1-4. DOI: 10. 1007/s11214-008-9353-0 (c) Springer Science+Business Media B. V. 2008 Keywords Aeronomy The term "aeronomy" has been used widely for many decades, but its origin has mostly been lost over the years. It was introduced by Sydney Chapman in a Letter to the Editor, entitled "Some Thoughts on Nomenclature," in Nature in 1946 (Chapman 1946). In that letter he suggested that aeronomy should replace meteorology, writing that the word "meteor is now irrelevant and misleading." This proposal was apparently not received with much support so in a short note in Weather in 1953 Chapman (1953)wrote: "If, despite its obvious convenience of brevity in itself and its derivatives, it does not commend itself to aeronomers, I think there is a case for modifying my proposal so that instead of the word being used to signify the study of the atmosphere in general, it should be adopted with the restricted sense of the science of the upper atmosphere, for which there is no convenient short word. " In a chapter, he wrote in a 1960 book (Chapman 1960), he give his nal and de nitive de nition, by stating that "Aeronomy is the science of the upper region of the atmosphere, where dissociation and ionization are important." The Workshop on "Comparative Aeronomy" was held at ISSI during the week of June 25-29, 2007.
J.L. Burch.V. Angelopoulos Originally published in the journal Space Science Reviews, Volume 141, Nos 1-4, 1-3. DOI: 10.1007/s11214-008-9474-5 (c) Springer Science+Business Media B.V. 2008 The Earth, like all the other planets, is continuously bombarded by the solar wind, which is variable on many time scales owing to its connection to the activity of the Sun. But the Earth is unique among planets because its atmosphere, magnetic eld, and rotation rates are each signi cant, though not dominant, players in the formation of its magnetosphere and its reaction to solar-wind inputs. An intriguing fact is that no matter what the time scale of solar-wind variations, the Earth's response has a de nite pattern lasting a few hours. Known as a magnetospheric substorm, the response involves a build-up, a crash, and a recovery. The build-up (known as the growth phase) occurs because of an interlinking of the geom- netic eld and the solar-wind magnetic eld known as magnetic reconnection, which leads to storage of increasing amounts of magnetic energy and stress in the tail of the mag- tosphere and lasts about a half hour. The crash (known as the expansion phase) occurs when the increased magnetic energy and stresses are impulsively relieved, the current system that supports the stretched out magnetic tail is diverted into the ionosphere, and bright, dynamic displays of the aurora appear in the upper atmosphere. The expansion and subsequent rec- ery phases result from a second magnetic reconnection event that decouples the solar-wind and geomagnetic elds."
The workshop "Nonhnear MHD Waves and Turbulence" was held at the - servatoire de Nice, December 1-4, 1998 and brought together an international group of experts in plasma physics, fluid dynamics and applied mathematics. The aim of the meeting was to survey the current knowledge on two main topics: (i) propagation of plasma waves (like Alfven, whistler or ion-acoustic waves), their instabilities and the development of a nonlinear dynamics lea ding to solitonic structures, wave collapse or weak turbulence; (ii) turbulence in magnetohydrodynamic flows and its reduced description in the presence of a strong ambient magnetic fleld. As is well known, both aspects play an important role in various geophysical or astrophysical media such as the - gnetospheres of planets, the heliosphere, the solar wind, the solar corona, the interplanetary and interstellar media, etc. This volume, which includes expanded versions of oral contributions pre sented at this meeting, should be of interest for a large community of resear chers in space plasmas and nonlinear sciences. Special effort was made to put the new results into perspective and to provide a detailed literature review. A main motivation was the attempt to relate more closely the theoretical un derstanding of MHD waves and turbulence (both weak and strong) with the most recent observations in space plasmas. Some papers also bring interesting new insights into the evolution of hydrodynamic or magnetohydrodynamic structures, based on systematic asymptotic methods."
Astromineralogy deals with the science of gathering mineralogical information from the astronomical spectroscopy of asteroids, comets and dust in the circumstellar environments in general. It is only recently, however, that this field has received a tremendous boost with the reliable identification of minerals by the Infrared Space Observatory. This book is the first comprehensive and coherent account of this exciting field. Beyond addressing the specialist in the field, the book is intended as a high-level but readable introduction to astromineralogy for both the nonspecialist researcher and the advanced student.
Uncertainty for Everyone The one thing that is certain about the world is that the world is uncertain. I have here, the question that apart of the matter, living matter, has to resolve in each and every one of its moments of existance. The environment of a living being is apart of the living being where it turns out, the rest of the living beings live. This is the drama of life on earth. Every living individual debates with his environment, exchanging matter, energy and information in the hope of staying alive, the same as all living beings who share that same environment. The adven ture of a living being (of all living beings ) is to maintain reasonable independ ence in face ofthe fluctuations ofuncertainty within the environment. The range of restrictions and mutual relationships is colossal. How is the tran seendental pretension of staying alive regulated? There is an equation imposed by the laws ofthermodynamics and the mathematical theory ofinformation about the interaction ofa living being with his environment which we could state like this: The complexity 01 a living individual plus his capacity for anticipation in re spect to his environment is identical to the uncertainty of the environmentplus the capacity of that living being to change the environment."
This volume presents the edited lecture notes of the First JETSET School on Jets from Young Stars: Models and Constraints, held by the Marie Curie Research and Training Network on JET Simulations, Experiments and Theory. The first half of the book is devoted to general observational constraints. The second section is devoted to theoretical knowledge of magneto-hydrodynamic processes pertinent to the jet launching mechanism in young stars.
The reference work on astrophysics to provide a comprehensive introduction to the physics of Interstellar Matter. The objective of the book is to show how physics can be applied to the understanding and diagnosis of the phase structure, the physical conditions and the chemical make-up and evolution of the interstellar medium. Unlike other textbooks in the field, here a more systematic approach has been adopted based on the authors' lecture course experience. It is aimed primarily at those undertaking post-graduate courses, or those doing advanced projects as part of honours undergraduate courses in physics or astrophysics.
This volume contains the Proceedings of the Fourth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidade de Santiago de Compostela in Galicia from September 11 to 14, 2000. The event brought together 156 participants who pre- sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (95 and 51, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As- tronomy and Astrophysics for the period 1998-1999 to Dr. H. Socas. This is the first time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidade de Santiago de Compostela, and, in particular, to the Observatorio Astronomico Ramon Marfa Aller, for its hospi- tality. The Local Organizing Committee took care of all the logistics details to ensure a nice stay for all the participants. The effort of the Scientific Organizing Committee was decisive in determining the organizational and scientific success of the meeting.
This book was conceived during the Workshop "Calibration and Orientation of Cameras in Computer Vision" at the XVIIth Congress of the ISPRS (In ternational Society of Photogrammetry and Remote Sensing), in July 1992 in Washington, D. C. The goal of this workshop was to bring photogrammetry and computer vision experts together in order to exchange ideas, concepts and approaches in camera calibration and orientation. These topics have been addressed in photogrammetry research for a long time, starting in the sec ond half of the 19th century. Over the years standard procedures have been developed and implemented, in particular for metric cameras, such that in the photogrammetric community such issues were considered as solved prob lems. With the increased use of non-metric cameras (in photogrammetry they are revealingly called "amateur" cameras), especially CCD cameras, and the exciting possibilities of acquiring long image sequences quite effortlessly and processing image data automatically, online and even in real-time, the need to take a new and fresh look at various calibration and orientation issues became obvious. Here most activities emerged through the computer vision commu nity, which was somewhat unaware as to what had already been achieved in photogrammetry. On the other hand, photogrammetrists seemed to ignore the new and interesting studies, in particular on the problems of orienta tion, that were being performed by computer vision experts."
This is quite simply the first volume of its kind dedicated to the area of high time resolution astrophysics. High time resolution astrophysics (HTRA) is an important new window on the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. Underlining this science foundation, technological developments in both instrumentation and detectors are described.
C. T. Russell Originally published in the journal Space Science Reviews, Volume 136, Nos 1-4. DOI: 10. 1007/s11214-008-9344-1 (c) Springer Science+Business Media B. V. 2008 The Sun-Earth Connection is now an accepted fact. It has a signi cant impact on our daily lives, and its underpinnings are being pursued vigorously with missions such as the Solar TErrestrial RElations Observatory, commonly known as STEREO. This was not always so. It was not until the middle of the nineteenth century that Edward Sabine connected the 11-year geomagnetic cycle with Heinrich Schwabe's deduction of a like periodicity in the sunspot record. The clincher for many was Richard Carrington's sighting of a great whi- light are on the Sun, on September 1, 1859, followed by a great geomagnetic storm 18 hours later. But was the Sun-Earth Connection signi cant to terrestrial denizens? Perhaps in 1859 it was not, but a century later it became so. Beginning in the 1930's, as electrical powergrids grew in size, powercompanies began to realize that they occasionally had power blackouts during periods of intense geomagnetic activity. This correlation did not appear to be suf ciently signi cant to bring to the attention of the public but during the International Geophysical Year (IGY), when geomagnetic activity was being scrutinized intensely, the occurrence of a large North American power blackout during a great magnetic storm was impossible to ignore.
Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different from the newly discovered systems. Then the study of planetary systems and of exoplanets is presented from a more theoretical point of view. The book ends with an outlook to future astronomical projects, and a description of the search for life on exoplanets. This book addresses students and researchers who wish to better understand this newly expanding field of research.
A comprehensive description of hybrid plasma simulation models providing a very useful summary and guide to the vast literature on this topic.
This volume is the outgrowth of several international meetings to discuss a vision for the future of solar radio physics: the development of a new radio instrument. From these discussions, the concept for the Frequency Agile Solar Radiotelescope (FASR) was born. Most of the chapters of this book are based oninvitedtalksattheFASRScienceWorkshop,heldinGreenbank,WVinMay 2002, and a special session on Solar and Space Weather Radiophysics held at the 200th American Astronomical Society meeting held in Albuquerque, NM in June 2002. Although many of the chapters deal with topics of interest in planning for FASR, other topics in Solar and Space Weather Radiophysics, such as solar radar and interplanetary scintillation, are covered to round out the discipline. The authors have been asked to write with a tutorial approach, to make the book useful to graduate students and scientists new to radio physics. This book is more than a compilation of FASR science topics. The FASR instrument concept is so revolutionary-by extending capability by an order of magnitude in several dimensions at once (frequency coverage, spatial reso- tion,dynamicrange,timeresolution,polarizationprecision)-thatitchallenges scientiststothinkinnewways. Theauthorsofthefollowingchaptershavebeen taskednotonlywithreviewingthecurrentstateofthe?eld,butalsowithlooking to the future and imagining what is possible. Radio emission is extremely complex because it is generated so readily, and every imaginable plasma parameter affects it. This is both its great strength and its weakness.
Presenting some of the most recent results of Russian research into shock compression, as well as historical overviews of the Russian research programs into shock compression, this volume will provide Western researchers with many novel ideas and points of view. The chapters in this volume are written by leading Russian specialists various fields of high-pressure physics and form accounts of the main researches on the behavior of matter under shock-wave interaction. The experimental portions contain results of studies of shock compression of metals to high and ultra-high pressure, shock initiation of polymorphic transformations, strength, fracture and fragmentation under shock compression, and detonation of condensed explosives. There are also chapters on theoretical investigations of shock-wave compression and plasma states in regimes of high-pressure and high- temperature. The topics of the book are of interest to scientists and engineers concerned with questions of material behavior under impulsive loading and to the equation of state of matter. Application is to questions of high-speed impact, inner composition of planets, verification of model representations of material behavior under extreme 1oading conditions, syntheses of new materials, development of new technologies for material processing, etc. Russian research differs from much of the Western work in that it has traditionally been wider-ranging and more directed to extremes of response than to precise characterization of specific materials and effects. Western scientists could expect to benefit from the perspective gained from close knowledge of the Russian work.
Galaxies have a history. This has become clear from recent sky surveys which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components: very hot gas, atomic hydrogen, molecules, dust, dark matter ... A significant advance is expected due to new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe. Three Euroconferences have been planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy. The first one, held in Granada (Spain) in May 2000, addressed the observational clues. The second one took place in October 2001 in St Denis de la Reunion (France) and reviewed the basic building blocks and small-scale processes in galaxy evolution. The third one will take place in July 2002 in Kiel (Germany) and will be devoted to the overall modelling of galaxy evolution. This book contains the proceedings of the second conference. It is suitable for researchers and PhD students in Astrophysics. "
It was with pleasure that CAUP became for three days the core to the cloud of star formation experts all over the world. Close to the celebration of its 15th anniversary - therefore still in the early stages of institutional evolution - we are proud of our multiple activities in Astronomy: a productive research centre, classi?ed as "Institution of excellence" within the Portuguese research units, but also an "Institution of Public Utility" as recognised by the Government. Fifteen years ago we choose to play a role not only in research, as expected from any research centre but also in the training of the future astronomers and the promotion of science and scienti?c culture. This choice is clearly stated in our by-laws and also in the multiple activities we have carried out since. Along the years we have organized on a regular basis international Workshops similar to "Cores to Clusters." Sometimes we have chosen to organize int- national conferences of a larger size. On other occasions the choice has been for smaller and more informal discussion meetings. Or even doctoral schools with very different objectives. In common all those meetings have always had, besides the formal registered participants, a group of informal participants, our undergraduate students of Astronomy, so eager to be in touch with the real world.
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.
Galaxies have a history. This has become clear from recent sky surveys, which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components: very hot gas, atomic hydrogen, molecules, dust, dark matter. A significant advance is expected due to new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe. Three Euroconferences have been planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy. The first, held in Granada (Spain) in May 2000, addressed the observational clues. The second will take place in October 2001 in St Denis de la Reunion (France) and will review the basic building blocks and small-scale processes in galaxy evolution. The third will take place in July 2002 in Kiel (Germany) and will be devoted to the overall modelling of galaxy evolution. This book contains the proceedings of the first conference. It is recommended to researchers and PhD students in Astrophysics."
Chaos theory plays an important role in modern physics and related sciences, but -, the most important results so far have been obtained in the study of gravitational systems applied to celestial mechanics. The present set of lectures introduces the mathematical methods used in the theory of singularities in gravitational systems, reviews modeling techniques for the simulation of close encounters and presents the state of the art about the study of diffusion of comets, wandering asteroids, meteors and planetary ring particles. The book will be of use to researchers and graduate students alike.
Grappling with Gravity explores the physiological changes that will occur in humans and the plants and animals that accompany humans as we move to new worlds, be it to colony in the emptiness of space or settlements on the Moon, Mars, or other moons or planets. This book focuses on the biomedical aspects, while not ignoring other life-changing influences of space living. For example, what happens to people physiologically in the microgravity of space, where weight and the direction "up" become meaningless? Adapting to microgravity represents the greatest environmental challenge that life will have encountered since our ancestors moved from the seas to solid Earth. Away from Earth the human body will begin almost immediately to adapt and change, to be able to function in these strange environments. As a person adapts in space he or she will become less fit to live on Earth. |
![]() ![]() You may like...
Model Ecosystems in Extreme…
Joseph Seckbach, Pabulo Henrique Rampelotto
Paperback
R2,578
Discovery Miles 25 780
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Principles of Electric Methods in…
Alex Kaufman, B Anderson
Paperback
Geometric Algebra Applications Vol. II…
Eduardo Bayro Corrochano
Hardcover
R5,214
Discovery Miles 52 140
The Geological Interpretation of Well…
M.H. Rider, Martin Kennedy
Paperback
R1,669
Discovery Miles 16 690
|