![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Space science
NASA's Genesis mission, launched on August 8, 2001 is the fifth mission in the Discovery series. Genesis addresses questions about the materials and processes involved in the origin of the solar system by providing precise knowledge of solar isotopic and elemental compositions for comparison with the compositions of meteoritic and planetary materials. This book describes the Genesis mission, the solar wind collector materials, the solar wind concentrator and simulations of its performance, the plasma ion and electron instruments, and the way these two instruments are used to determine the solar wind flow regime on board the spacecraft. The book is of interest to all potential users of the data returned by the Genesis mission, to those studying the isotopic and chemical composition of the early solar system whose work will be influenced by the measurements made by Genesis and by all those interested in the design and implementation of space instruments to study space plasmas.
Presents and addresses key space law and policy issues for the benefit of wider informed audiences that wish to acquaint themselves with the fundamentals of the space law field. This brief analyzes in a concise manner the combined influence of space law and policy on international space activities. Read in conjunction with the other books in the Springer 'Space Development' series, it supports a broader understanding of the business, economics, engineering, legal, and procedural aspects of space activities. This book will also give the casual reader as well as experts in the field insight on present and future space law and policy trends, challenges and opportunities.
The first Asia-Pacific Conference on Few-Body Problems in Physics took place from August 23 to August 28, 1999, at the Noda campus of the Sci ence University of Tokyo in Noda-city and Sawayaka Chiba Kenmin Plaza in Kashiwa-city, a suburb of Tokyo close to the Narita-Tokyo International Air port, with the Frontier Research Center for Computation Sciences (FRCCS) of the Science University of Tokyo as the host institute. The High Energy Accel erator Research Organization (KEK), the Institute of Physical and Chemical Research (RIKEN), the Research Center for Nuclear Physics (RCNP)-Osaka University, the Physical Society of Japan, and the Association of Asia Pacific Physical Societies (AAPPS) supported this conference. The conference was initiated in the Asia Pacific area as a counterpart to the successful European Conference on Few-Body Problems in Physics (APFB99), in addition to the International Few-Body Conference Series and the Few Body Gordon Conference series in North America. The Physics of Few-Body Problems covers, as is well known, systems with finite numbers of particles in contrast to many-body systems with very large numbers of particles. Therefore, it covers such wide fields as mesoscopic, atom-molecular, exotic atom, nucleon, hyperon, and quark-gluon physics, plus their applications."
After a year's successful operation, the European DENIS project is now a scientific reality and its close cousin 2MASS (USA) is about to come into operation. The observational and data reduction processes of both DENIS and 2MASS are fully described in this volume. Already the impact of DENIS is making itself felt in the astronomical community in areas of research as diverse as cosmology, the evolution of galaxies, the interstellar medium, the search for brown dwarfs, and stellar structure and evolution. The first routine results from DENIS and the preliminary results from the 2MASS prototype camera are discussed and compared with other surveys across the wavelength spectrum, both space- and ground-based, including the Digitized Sky Survey, ISO and ROSAT.
Mohamed Larbi Selassi Deputy Director of the National Meteorology, Morocco Welcome address (translated from French) WMO, WCRP, Medias-France and scientific institutions representatives, ladies and gentlemen, to thank WMO and MEDIAS-France, who have honoured us by I want first organizing the two workshops, climate indices in Africa and data assessment for global change research in the Mediterranean region, in Casablanca and I welcome all of you here in Morocco. It is with great pleasure that I open these two workshops on behalf of myself and on behalf of the Direction of the Meteorologie N ationale of Morocco. Climate change is becoming the focus of the international community because of its global scale and unpredictable effects, the numerous impacts it causes, its global feature and the complexity of the solutions that can mitigate its impacts. Global warming and the greenhouse effect became a subject of study at the international level since the United Nations Conference on the human environment that was held in Stockholm in 1972. The research and coordination efforts that have been made in this area have led to an "International Scientific consensus". High level meetings like those held in Toronto in 1988, in Lahaye in 1989 and in Geneva in 1990, did confirm the greenhouse threat and the emergency to treat it.
The Space Shuttle has been the dominant machine in the U.S. space program for thirty years and has generated a great deal of interest among space enthusiasts and engineers. This book enables readers to understand its technical systems in greater depth than they have been able to do so before. The author describes the structures and systems of the Space Shuttle, and then follows a typical mission, explaining how the structures and systems were used in the launch, orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Many photographs and technical drawings illustrate how the Space Shuttle functions, avoiding the use of complicated technical jargon. The book is divided into two sections: Part 1 describes each subsystem in a technical style, supported by diagrams, technical drawings, and photographs to enable a better understanding of the concepts. Part 2 examines different flight phases, from liftoff to landing. Technical material has been obtained from NASA as well as from other forums and specialists. Author Davide Sivolella is an aerospace engineer with a life-long interest in space and is ideally qualified to interpret technical manuals for a wider audience. This book provides comprehensive coverage of the topic including the evolution of given subsystems, reviewing the different configurations, and focusing on the solutions implemented.
The present sixth volume of ISSI Space Sciences Series is the outcome of the most ambitious study project of ISSI hitherto, that on 'Source and Loss Processes of Magnetospheric Plasma'. The goal has been to produce a fully integrated book on the subject, which gives an authoritative overview of all aspects of the topic in a well organized form, useful and readable both for active researchers in the field and for young scientists who are starting their research in space physics. In order to represent the full diversity of experience and perspective that exists in the science community, some 50 leading scientists from allover the world were invited to participate in the project and contribute to the text. With the scientific competence well in hand, the dominating problem in producing the book has been to achieve a degree of consistency in style, nomenclature, notations and format, as well as good cross referencing. To what degree we have succeeded in reaching our goal of delivering a volume that will be useful to the community in both its comprehensiveness and readability remains to be decided by the readers. The book is the outcome of a three year long process. In December 1995 the study project on 'Source and Loss Processes of Magnetospheric Plasma' was se lected by ISSI after consultations with several groups of senior representatives of the space physics community."
The geomagnetic field observed on the surface of the earth has been an important source of information on the dynamic behavior of the magnetosphere. Because the. magnetosphere and its environment are filled with plasma in which electric current can easily flow, dynamic processes that occur in the magnetosphere tend to produce perturba tions in the geomagnetic field. Geomagnetic data have therefore pro vided valuable means for sensing the processes taking place at remote locations, and such basic concepts as the magnetosphere, solar wind, and trapped radiation were derived in early, presatellite days from geomagnetic analyses. Because of this advantage, geomagnetic observations have been widely utilized for monitoring the overall condition of the magneto sphere. Although the advent of space vehides has made it possible to observe magnetospheric processes in situ, supplementary information on the overall magnetospheric condition is frequently found to be indispensable for interpreting these observations in the proper perspec tive. Hence for magnetospheric physicists involved in various branches of the field it has become a common practice to employ geomagnetic data as a basic diagnostic tool."
This is an extended version of lectures that were held at the summer workshop Atmosphiirische Umweltforschung im Spannungsfeld zwischen Technik und Natur (At mospheric Environmental Research between Technology and Nature) at the Techni 16, 1996. We were very happy to have Paul J. Crutzen, cal University in Cottbus on July winner of the Nobel Prize for chemistry in 1995, presenting the key lecture on glo bally changing chemistry in the atmosphere. Over the last decades, atmospheric chem istry has been established step by step, not just as an applied discipline of chemistry, but also as a key discipline for our understanding of air pollution, biogeochemical cycling, and climactic processes as well. In fact, the new definition of meteorology as the science of physics and chemistry of the atmosphere expresses this development very well. The chemistry of the atmosphere is strongly influenced by anthropogenic emissions, even on a global scale. As a result of emissions and chemical reactions, the chemical composition of the atmosphere influences the ecosystems directly via depo sition of trace substances, and indirectly by changing the physical climate. Therefore, in this book we combined state-of-the-art lectures describing the physical and chemi cal status of the atmosphere and selected issues representing the interface between atmosphere, technology and nature. Oxidising capacity, heterogeneous processes and acidity still remain as key issues in atmospheric chemistry, even in regions where efficient air control measures have been adopted resulting in reduction of primary atmospheric pollutants."
In 1995, the German Space Agency DARA selected the CHAllenging Minisatellite Payload (CHAMP) mission for development under a special support programme for the space industry in the new states of the unified Germany, with the Principal Investigator and his home institution GFZ Potsdam being ultimately responsible for the success of all mission phases. After three years of spacecraft manufactur ing and testing, the satellite was injected successfully into its final, near circular, almost polar and low altitude (450 km) orbit from the cosmodrome Plesetsk in Russia on July 15, 2000. After a nine month commissioning period during which all spacecraft systems and instruments were checked, calibrated and validated, the satellite has been delivering an almost uninterrupted flow of science data since May 2001. Since this date, all science data have been made available to the more than 150 selected co-investigator teams around the globe through an international Announcement of Opportunity. The scientific goals of the CHAMP mission are to gain a better understanding of dynamic processes taking place in the Earth's interior and in the space near Earth. These goals can be achieved by improved observation of the Earth's gravity and magnetic fields and their time variability with high-performance on-board instru mentation and by exploring the structure of the Earth's atmosphere and ionosphere through radio occultation measurements.
Stellar astrophysics still provides the basic framework for deciphering the imprints left over by the evolving universe on all scales. Advances or shortcomings in the former field have direct consequences in our ability to understand the global properties of the latter. This volume contains the most recent updates on a variety of topics that, though independent by themselves, are inevitably connected on a cosmological scale. These include comprehensive articles by leaders in fields extending from stellar atmospheres through properties of the stellar component in the Milky Way up to the stellar environment in high redshift galaxies. The wide coverage of astrophysical themes makes this volume very valuable for researchers and Ph.D. students in astrophysics.
The articles in this volume cover, for the first time, all aspects of planetary magnetism, from the observations made by space missions to their interpretation in terms of the properties of all the planets in the solar system. Studies of dynamo-generated magnetic fields in Mercury, the Earth, the giant planets, as well as in Ganymede, one of Jupiter s moons, are presented. Crustal magnetic field in Mars, the Mon and the Earth are described as well as magnetic fields induced in the solar system bodies. There are several articles dealing with dynamo theory and modelling and applications to the different planets."
Incoming Asteroid is based on a project within ASTRA (the
Association in Scotland to Research into Astronautics) to provide
scientific answers to the question what would we do if we knew
there was going to be an asteroid impact in ten years time or
less? And finally, Incoming Asteroid considers the political implications - how governments across the world should best react to the threat with a view to minimizing loss of life, and in the weeks running up to the possible impact, preventing panic in the population."
Interesting and often unexpected achievements of the mechanics of space flight throw a new light onto several classical problems. The book's emphasis is on analysis carried out on the level of graphs and drawings, and sometimes numbers, revealing the beauty of the research process leading to the results.
It has been nearly 100 years since the Apollo moon landings, when Jack and Vladimir, two astronauts on a mission to Venus, discover a mysterious void related to indigenous life on the planet. Subsequently more voids are detected on Earth, Mars, Titan, and, quite ominously, inside a planetoid emerging from the Kuiper belt. Jack is sent to investigate the voids in the Solar System and intercept the planetoid - which, as becomes increasingly clear, is inhabited by alien life forms. Jack and his crew will have little time to understand their alien biochemistry, abilities, behavior patterns, resilience, and technology, but also how these life forms relate to the voids. Humankind's first encounter with these exotic life forms couldn't be more fateful, becoming a race against time to save life on Earth and to reveal the true nature of the voids, which seem to be intrinsically related to life and the universe itself. In this novel, the author combines many topics related to state-of-the-art research in the field of astrobiology with fictional elements to produce a thrilling page turner. This new version significantly develops the astrobiological denouement of the plot and features an extensive non-technical appendix where the underlying science is presented and discussed. From the reviews of the first edition ("Voids of Eternity: Alien Encounter") Here's a thrilling yarn in the best "hard SF" tradition of Asimov, James Hogan, and Ben Bova, written by a scientist who knows all about the possibilities of life in the solar system and beyond. Dirk Schulze-Makuch weaves into his book all the astrobiological themes he's worked on in recent years -- speculation about creatures in the atmosphere of Venus and on and under the surface of Mars and Titan -- together with some well-informed Eastern philosophy and a cracking good space battle. A great first novel from a rising talent. Highly recommended. David Darling, on amazon.com, 2009The research interests of Dr. Schulze-Makuch, currently a professor at Washington State University, focus on evolutionary adaptation strategies of organisms in their natural environment, particularly extreme environments such as found on other planetary bodies. Dirk Schulze-Makuch is best known for his publications on extraterrestrial life, being coauthor of three books on the topic: "We Are Not Alone: Why We Have Already Found Extraterrestrial Life" (2010), "Cosmic Biology: How Life could Evolve on Other Worlds" (2010), and "Life in the Universe: Expectations and Constraints" (2004). In 2011 he published with Paul Davies "A One Way Mission to Mars: Colonizing the Red Planet" and in 2012 with David Darling "Megacatastrophes Nine Strange Ways the World Could End."
This book provides an overview of key topics related to space business and management. Case studies and an integrative section are included to illustrate the fundamental concepts and to build intuition. Key topics in the field, such as risk management and cost management, are covered in detail.
This book develops a credible scenario for interstellar exploration
and colonization. In so doing, it examines:
This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the Kurchatov Atomic Energy Institute (S. V. Antipov, A. S. Trubnikov, AYu. Rylov, AV. Khutoretsky) and astrophysics theoreticians from the Astronomical Council of the USSR Academy of Sciences (AM. Frid man) and from the Volgograd State University (AG. Morozov). To all of them we wish to express our gratitude. Whenever we speak of "our experiments," the participation of the entire team is implied."
Laser physics and nonlinear optics are fields which have been intimately con nected from their beginning. Nonlinear optical effects such as second-har monic generation fulfil vital functions in many laser systems. Conversely advances in laser development quickly lead to progress in nonlinear optics. Of particular importance has been the development of tunable visible and uv lasers. With the ability to tune the laser frequency into close resonance with atomic transition frequencies, one can produce a large resonance en hancement of the nonlinearity. This permits the observation of a great var iety of nonlinear optical processes in dilute media such as atomic vapours. In recent years much of the research effort in nonlinear optics has been directed towards the use of such media, and it is this area which forms the subject of the present book. We review a wide range of nonlinear optical processes in atomic vapours, molecular gases and cryogenic liquids. At the same time we have tried to treat the subject in sufficient depth to be useful to research workers in the field. To achieve this, a measure of selectivity has been introduced by emphasising those nonlinear processes which are seen to have applications as sources of tunable coherent radiation. Thus we have not discussed in any detail those nonlinear processes whose main applications are in spec troscopy, such as Doppler-free two-photon absorption."
In Shaping Science, Janet Vertesi draws on a decade of immersive ethnography with NASA's robotic spacecraft teams to create a comparative account of two great space missions of the early 2000s. Although these missions appear to feature robotic explorers on the frontiers of the solar system, bravely investigating new worlds, their commands were issued from millions of miles away by a very human team. By examining the two teams' formal structures, decision-making techniques, and informal work practices in the day-to-day process of mission planning, Vertesi shows just how deeply entangled a team's local organizational context is with the knowledge they produce about other worlds. Using extensive, embedded experiences on two NASA spacecraft teams, this is the first book to apply organizational studies of work to the laboratory environment in order to analyze the production of scientific knowledge itself. Engaging and deeply researched, Shaping Science demonstrates the significant influence that the social organization of a scientific team can have on the practices of that team and the results they produce.
The discovery of the ?rst case of superluminal radio jets in our galaxy in 1994 from the bright and peculiar X-ray source GRS 1915+105 has opened the way to a major shift in the direction of studies of stellar-mass accreting binaries. The past decade has seen an impressive increase in multi-wavelength studies. It is now known that all black hole binaries in our galaxy are radio sources and most likely their radio emission originates from a powerful jet. In addition to the spectacular events related to the ejection of superluminal jets, steady jets are known from many systems. Compared with their supermassive cousins, the nuclei of active galaxies, stellar-mass X-ray binaries have the advantage of varying on time scales accessible within a human life (sometimes even much shorter than a second). This has led to the ?rst detailed studies of the relation between accretion and ejection. It is even possible that, excluding their "soft" periods, the majority of the power in gal- tic sources lies in the jets and not in the accretion ?ows. This means that until a few years ago we were struggling with a physical problem, accretion onto compact objects, without considering one of the most important components of the system. Models that associate part of the high-energy emission and even the fast aperiodic variability to the jet itself are now being proposed and jets can no longer be ignored.
An outgrowth of the first Asia-Pacific Regional School on the International Heliophysical Year (IHY), this volume contains a collection of review articles describing the universal physical processes in the heliospace influenced by solar electromagnetic and mass emissions. The Sun affects the heliosphere in the short term (space weather) and in the long term (space climate) through numerous physical processes that exhibit similarities in various spatial domains of the heliosphere. The articles take into account various aspects of the Sun-heliosphere connection under a systems approach. This volume will serve as a ready reference work for research in the emerging field of heliophysics, which describes the physical processes taking place in the physical space controlled by the Sun out to the local interstellar medium.
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind."
When Sultan bin Salman left Earth on the shuttle Discovery in 1985, he became the first Arab, first Muslim and first member of a royal family in space. Twenty-five years later, the discovery of a planet 500 light years away by the Qatar Exoplanet Survey - subsequently named `Qatar-1b' - was evidence of the cutting-edge space science projects taking place across the Middle East. This book identifies the individuals, institutions and national ideologies that enabled Arab astronomers and researchers to gain support for space exploration when Middle East governments lacked interest. Jorg Matthias Determann shows that the conquest of space became associated with national prestige, security, economic growth and the idea of an `Arab renaissance' more generally. Equally important to this success were international collaborations: to benefit from American and Soviet expertise and technology, Arab scientists and officials had to commit to global governance of space and the common interests of humanity. Challenging the view that the golden age of Arabic science and cosmopolitanism was situated in the medieval period, Determann tells the story of the new discoveries and scientific collaborations taking place from the 19th century to the present day. An innovative contribution to Middle East studies and history of science, the book also appeals to increased business, media and political interest in the Arab space industry.
On attending a conference on the Jovian satellites at UCLA, I heard Lou Lanze rotti vigorously present the exciting data on the sputtering of water ice by Me V protons taken with W. L. Brown at AT&T Bell Labs. In his inimitable way he made clear that this new electronic sputtering process was very poorly under stood and was very important for surface properties of sattelites. I was immedia tely hooked, and have been working ever since with Lanzerotti, Brown, my col league at Virginia, John Boring, and Bo Sundqvist at Uppsala on understanding the ejection of material from surfaces and applying laboratory results to intere sting planetary problems. In the course of writing this book I also had the benefit of spending a semester with the Planetary Geosciences group in Hawaii, thanks to Tom McCord, a period of time with Doug Nash at JPL, and a period ot time with the group at Catania. The book was started with the encouragement of Lou Lanzerotti. The writing has gone slowly as the field has been changing rapidly. Even now I feel it is incom plete, as the interesting Halley dust data have just recently been interpreted in detail, Voyager has recently visited Neptune, and the data on Pluto are rapidly improving. However, most of the principles for plasma ion alteration of surfaces and gases have been established allowing, I hope, a coherent and useful frame work for incorporating both new laboratory and planetary data." |
![]() ![]() You may like...
CMS Pixel Detector Upgrade and Top Quark…
Simon Spannagel
Hardcover
Advanced Computing Technologies and…
Hari Vasudevan, Antonis Michalas, …
Hardcover
R5,731
Discovery Miles 57 310
Bayes Factors for Forensic Decision…
Silvia Bozza, Franco Taroni, …
Hardcover
R1,648
Discovery Miles 16 480
Effective Lagrangians for the Standard…
Antonio Dobado, Nicola A. Gomez, …
Hardcover
R2,597
Discovery Miles 25 970
Bose-einstein Condensation - From Atomic…
Mukunda Prasad Das, Craig M. Savage
Hardcover
R3,608
Discovery Miles 36 080
|