![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Space science
This book introduces the theory of stellar atmospheres. Almost everything we know about stars is by analysis of the radiation coming from their atmospheres. Several aspects of astrophysics require accurate atmospheric parameters and abundances. Spectroscopy is one of the most powerful tools at an astronomer’s disposal, allowing the determination of the fundamental parameters of stars: surface temperature, gravity, chemical composition, magnetic field, rotation and turbulence. These can be supplemented by distance measurements or pulsation parameters providing information about stellar interior and stellar evolution, otherwise unavailable. The volume is based on lectures presented at the Wrocław's Spectroscopic School aimed at training young researchers in performing quantitative spectral analysis of low-, mid-, and high-resolution spectra of B, A, and F-type stars.
Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.
Militarizing Outer Space explores the dystopian and destructive dimensions of the Space Age and challenges conventional narratives of a bipolar Cold War rivalry. Concentrating on weapons, warfare and vio lence, this provocative volume examines real and imagined endeavors of arming the skies and conquering the heavens. The third and final volume in the groundbreaking European Astroculture trilogy, Militarizing Outer Space zooms in on the interplay between security, technopolitics and knowledge from the 1920s through the 1980s. Often hailed as the site of heavenly utopias and otherworldly salvation, outer space transformed from a promised sanctuary to a present threat, where the battles of the future were to be waged. Astroculture proved instrumental in fathoming forms and functions of warfare's futures past, both on earth and in space. The allure of dominating outer space, the book shows, was neither limited to the early twenty-first century nor to current American space force rhetorics.
Space telescopes are among humankind's greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.
Presents a comprehensive synopsis of the current state of cosmic rays, their modulation and their effects in the Earth's atmosphere. Leading scientists in the field assess the current state of our understanding of the spatial and temporal variations of galactic and anomalous cosmic rays in the Heliosphere, and their relation to effects of the Sun. The main objective is to understand the spatial and temporal variation of galactic and anomalous cosmic rays in the light of recent observations, theory and modeling by identifying the key mechanism(s) of cosmic ray modulation and how changes on the Sun relate to changes in the observed characteristics of cosmic rays in the Heliosphere; examining the current long-lasting solar minimum and understand its implications for solar-cycle variations and long-term variations; and interpreting the long-term variations of cosmogenic radionuclides in terms of solar variability and climate change on Earth. This volume is aimed at graduate students active in the fields of solar physics, space science, and cosmic ray physics. Originally published in Space Science Reviews journal, Vol. 176/1-4, 2013.
This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art sensors and actuators.
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvenic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom's law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Is the Earth the right model and the only universal key to understand habitability, the origin and maintenance of life? Are we able to detect life elsewhere in the universe by the existing techniques and by the upcoming space missions? This book tries to give answers by focusing on environmental properties, which are playing a major role in influencing planetary surfaces or the interior of planets and satellites. The book gives insights into the nature of planets or satellites and their potential to harbor life. Different scientific disciplines are searching for the clues to classify planetary bodies as a habitable object and what kind of instruments and what kind of space exploration missions are necessary to detect life. Results from model calculations, field studies and from laboratory studies in planetary simulation facilities will help to elucidate if some of the planets and satellites in our solar system as well as in extra-solar systems are potentially habitable for life.
The review articles collected in this volume present a critical assessment of particle acceleration mechanisms and observations from suprathermal particles in the magnetosphere and heliosphere to high-energy cosmic rays, thus covering a range of energies over seventeen orders of magnitude, from 103 eV to 1020 eV. The main themes are observations of accelerated populations from the magnetosphere to extragalactic scales and assessments of the physical processes underlying particle acceleration in different environments (magnetospheres, the solar atmosphere, the heliosphere, supernova remnants, pulsar wind nebulae and relativistic outflows). Several contributions review the status of shock acceleration in different environments and also the role of turbulence in particle acceleration. Observational results are compared with modelling in different parameter regimes. The book concludes with contributions on the status of particle acceleration research and its future perspectives. This volume is aimed at graduate students and researchers active in astrophysics and space science. Previously published in Space Science Reviews journal, Vol. 173 Nos. 1-4, 2012.
The word ''terraforming'' conjures up many exotic images and p- hapsevenwildemotions,butatitscoreitencapsulatestheideathat worldscanbechangedbydirecthumanaction.Theultimateaimof terraforming is to alter a hostile planetary environment into one that is Earth-like, and eventually upon the surface of the new and vibrant world that you or I could walk freely about and explore. It is not entirely clear that this high goal of terraforming can ever be achieved, however, and consequently throughout much of thisbooktheterraformingideasthatarediscussedwillapplytothe goal of making just some fraction of a world habitable. In other cases,theterraformingdescribedmightbeaimedatmakingaworld habitablenotforhumansbutforsomepotentialfoodsourcethat,of course, could be consumed by humans. The many icy moons that reside within the Solar System, for example, may never be ideal locationsforhumanhabitation,buttheypresentthegreatpotential for conversion into enormous hydroponic food-producing centers. The idea of transforming alien worlds has long been a literary backdrop for science fiction writers, and many a make-believe planet has succumbed to the actions of direct manipulation and the indomitable grinding of colossal machines. Indeed, there is something both liberating and humbling about the notion of tra- forming another world; it is the quintessential eucatastrophy espoused by J. R. R. Tolkien, the catastrophe that ultimately brings about a better world. When oxygen was first copiously produced by cyanobacterial activity on the Earth some three billion years ago, it was an act of extreme chemical pollution and a eucatastrophy. The original life-nurturing atmosphere was (eventually) changed f- ever, but an atmosphere that could support advanced life forms came about.
This is a detailed description of the steps leading from raw signals measured in space, to calibrated comparable long term data sets, to its final form: useful information for user communities. Examples of applications and data validations result from different investigations in the Mediteranean area. An appendix summarizes useful formulas of the evaluation of satellite data.
With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.
"The Early Evolution of the Atmospheres of Terrestrial Planets" presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth's transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are living in an epoch of important exoplanet discoveries, but current properties of these exoplanets do not match our scientific predictions using standard terrestrial planet models. This book deals with the main physio-chemical signatures and processes that could be useful to better understand the formation of rocky planets.
This volume explores the cross-linkages between the kinetic processes and macroscopic phenomena in the solar atmosphere, which are at the heart of our current understanding of the heating of the closed and open corona and the acceleration of the solar wind. The focus lies on novel data, on theoretical models that have observable consequences through remote sensing, and on near-solar and inner-heliosphere observations, such as anticipated by the upcoming Solar Orbiter and Solar Probe missions, which are currently developed by the international community. This volume is aimed at students and researchers active in solar physics and space science. Previously published in Space Science Reviews journal, Vol. 172, Nos. 1-4, 2012.
Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines. Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating further debris, which is known as the Kessler Syndrome. Scientific analysis has indicated an urgent need to perform space debris remediation through active removal of debris and on-orbit satellite servicing.
The development of the orbits theory lags behind the development of satellite technology. This book provides, for the first time in the history of human satellite development, the complete third order solution of the orbits under all possible disturbances. It describes the theory of satellite orbits, derives the complete solutions of the orbital disturbances, describes the algorithms of orbits determination based on the theory, describes the applications of the theory to the phenomenon of the satellite formation physically. The subjects include: Orbits Motion Equations, Disturbance theory, Solutions of the differential Equations, Algorithms of Orbits determinations, Applications of the theory to the satellite formation.
This textbook is a compendium for further education of students and professionals in aerospace industry. It covers the fundamentals of aerospace and explains the details of technical implementations. These are organised in the border area of technical feasibility. The authors discuss constraints of space flight and key elements of rocket motors and power supply in more detail. The accessibility of the celestial bodies is tabulated and documented in the outlook chapter, in which the largest vision of space flight, humans to Mars, is explained. From the content: Historical Background Basic Principles Propulsion Systems Missions Energy Sources Materials and Lubricants Processes Products Projects and Payloads Launch Sites Environmental and Boundary Conditions Conclusions and Outlook Appendix with an extensive collection of formulas
As we stand poised on the verge of a new era of spaceflight, we must rethink every element, including the human dimension. This book explores some of the contributions of psychology to yesterday's great space race, today's orbiter and International Space Station missions, and tomorrow's journeys beyond Earth's orbit. Early missions into space were typically brief, and crews were small, often drawn from a single nation. As international cooperation in space exploration has increased over the decades, the challenges of communicating across cultural boundaries and dealing with interpersonal conflicts have become all the more important, requiring different coping skills and sensibilities than "the right stuff" expected of early astronauts. As astronauts travel to asteroids or establish a permanent colony on the Moon, with the eventual goal of reaching Mars, the duration of expeditions will increase markedly, as will the psychosocial stresses. Away from their home planet for extended times, future spacefarers will need to be increasingly self-sufficient, while simultaneously dealing with the complexities of heterogeneous, multicultural crews. "On Orbit and Beyond: Psychological Perspectives on Human Spaceflight," the second, considerably expanded edition of "Psychology of Space Exploration: Contemporary Research in Historical Perspective," provides an analysis of these and other challenges facing future space explorers while at the same time presenting new empirical research on topics ranging from simulation studies of commercial spaceflights to the psychological benefits of viewing Earth from space. This second edition includes an all new section exploring the challenges astronauts will encounter as they travel to asteroids, Mars, Saturn, and the stars, requiring an unprecedented level of autonomy. Updated essays discuss the increasingly important role of China in human spaceflight. In addition to examining contemporary psychological research, several of the essays also explicitly address the history of the psychology of space exploration. Leading contributors to the field place the latest theories and empirical findings in historical context by exploring changes in space missions over the past half century, as well as reviewing developments in the psychological sciences during the same period. The essays are innovative in their approaches and conclusions, providing novel insights for behavioral researchers and historians alike.
In 1961, President John F. Kennedy issued a challenge: the United States would land a man on the moon and return him safely to Earth before the end of the decade. It seemed like an impossible task and one that the Russians--who had launched the first satellite and put the first man into Earth orbit--would surely perform before us. The ingenuity, passion, and sacrifice of thousands of ordinary men and women, from all walks of life, enabled the space program to meet this extraordinary goal. In all, six crews would land on the moon before Congress withdrew financial backing for the program. This is the story of those men and women who worked behind the scenes, without fanfare or recognition, to make these missions a success. Thirty years later, they still speak of Apollo with pride, sometimes even awe. After Apollo moonwalker John Young told journalist Billy Watkins in a 1999 interview that "nobody knows anything about the people who helped make those flights so successful," Watkins made it his mission to identify the unsung heroes and learn their stories. His subjects include: BLJulian Scheer (NASA publicist): Argued for and won the inclusion of a television camera on Apollo 11, enabling Armstrong's walk on the moon to be broadcast and recorded for posterity. BLSonny Morea, lead designer of the Lunar Rover. BLHugh Brown, one of the few African Americans who worked on the Apollo program, helped monitor for Russian submarines trying to jam NASA communication during launches, and later went on to become head of the Federal Reserve Bank in Atlanta. BLJoAnn Morgan, launch control: One of the few women involved in the space program, Morgan was designated the "lightning specialist." Herknowledge was crucial when the Apollo 12 spacecraft was struck by lightning only seconds after liftoff, nearly causing an abort. She was one of the few specialists allowed in the "firing room" during liftoff. BLJoan Roosa, widow of Apollo 14 astronaut Stuart Roosa, talks about the sacrifices of the families and their devotion to "The Program." BLJoe Schmitt, veteran suit technician was responsible for making sure the suits were leak-proof and hooked up correctly--knowing any mistake would mean instant death in space. BLJoseph Laitin, who came up with the idea for the Apollo 8 astronauts to read the first ten verses of Genesis during their Christmas Eve television broadcast from the moon. BLClancy Hatelberg, the Navy diver, who plucked the first humans to walk on the moon from the Pacific Ocean after the Apollo 11 landing.
The PRoject for OnBoard Autonomy (PROBA) missions are a series of microsatellites launched by the European Space Agency (ESA) and intended to provide an in-orbit test platform for new technologies. The second satellite in the series, PROBA2, was launched on November 2, 2009. The primary mission goal of PROBA2 is to perform an in-flight demonstration of a series of new spacecraft technologies. The secondary mission goal is the exploitation of the payload of scientific instruments consisting of two Sun-sensing instruments, the Sun Watcher with Active Pixel Sensor and Image Processing, and the Large Yield Radiometer. Both instruments are unique in a technological sense but also provide unique scientific data for the solar physics community. In this volume, a number of papers are collected that give an overview of the mission, the spacecraft, its instrument and its operations. In addition, the scientific outcome of the mission during the first two years is presented in a series of research papers. This volume is aimed at graduate students and researchers active in solar physics and space science. Previously published in Solar Physics journal, Vol. 286, No. 1, 2013.
th th Mars, the Red Planet, fourth planet from the Sun, forever linked with 19 and 20 Century fantasy of a bellicose, intelligent Martian civilization. The romance and excitement of that fiction remains today, even as technologically sophisticated - botic orbiters, landers, and rovers seek to unveil Mars' secrets; but so far, they have yet to find evidence of life. The aura of excitement, though, is justified for another reason: Mars is a very special place. It is the only planetary surface in the Solar System where humans, once free from the bounds of Earth, might hope to establish habitable, self-sufficient colonies. Endowed with an insatiable drive, focused motivation, and a keen sense of - ploration and adventure, humans will undergo the extremes of physical hardship and danger to push the envelope, to do what has not yet been done. Because of their very nature, there is little doubt that humans will in fact conquer Mars. But even earth-bound extremes, such those experienced by the early polar explorers, may seem like a walk in the park compared to future experiences on Mars.
This book was compiled from contributions given at the 7th IAA Symposium on Small Satellites for Earth Observation, May 4-8, 2009, Berlin (IAA - International Academy of Astronautics). From the 15 sessions for oral presentations and two poster sessions, 52 contributions were selected which are representative for the new developments and trends in the area of small satellites for Earth observation. They re ect the potentials of a diversity of missions and related technologies. This may be based on national projects or international co-operations, single satellites of constellations, pico-, nano-, micro- or mini-satellites, developed by companies, research institutions or agencies. The main focus is on new missions to monitor our Earth's resources (Part I), and the environment in which our Earth is emb- ded (Part II). Part III deals with distributed space systems, a unique feature of small satellites and in most cases impractical to do with large satellites. Here we concentrate on constellations of satellites with focus on future missions relying on co-operating satellites. For all the new developments and projects we need well e- cated specialists coming from the universities. Many universities included already the development and implementation of small satellites in their curriculum. The u- versity satellites chapter (Part IV) shows the high quality which is already reached by some of the universities worldwide.
The various processes that connect the physics of the Sun with that of the Earth`s environment has become known as "Space Weather" during recent years, a slogan that has emerged in connection with many other expressions adapted from meteorology, such as solar wind, magnetic clouds or polar rain. This volume is intended as a first graduate-level textbook-style account on the physics of these solar-terrestrial relations and their impact on our natural and technological environment.
The effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour is continued from the past meetings.
This book is one of two volumes meant to capture, to the extent practical, the scienti?c legacy of the Cassini-Huygens prime mission, a landmark in the history of planetary exploration. As the most ambitious and interdisciplinary planetary exploration mission ?own to date, it has extended our knowledge of the Saturn system to levels of detail at least an order of magnitude beyond that gained from all previous missions to Saturn. Nestled in the brilliant light of the new and deep understanding of the Saturn planetary system is the shiny nugget that is the spectacularly successful collaboration of individuals, - ganizations and governments in the achievement of Cassini-Huygens. In some ways the pa- nershipsformedandlessonslearnedmaybethemost enduringlegacyofCassini-Huygens.The broad, international coalition that is Cassini-Huygens is now conducting the Cassini Equinox Mission and planning the Cassini Solstice Mission, and in a major expansion of those fruitful efforts, has extended the collaboration to the study of new ?agship missions to both Jupiter and Saturn. Such ventures have and will continue to enrich us all, and evoke a very optimistic vision of the future of international collaboration in planetary exploration. The two volumes in the series Saturn from Cassini-Huygens and Titan from Cassini- Huygens are the direct products of the efforts of over 200 authors and co-authors. Though each book has a different set of three editors, the group of six editors for the two volumes has worked together through every step of the process to ensure that these two volumes are a set. |
![]() ![]() You may like...
Modern Spacecraft Guidance, Navigation…
Vincenzo Pesce, Andrea Colagrossi, …
Paperback
R5,379
Discovery Miles 53 790
Magnetospheric Imaging - Understanding…
Yaireska M Collado-Vega, Dennis Gallagher, …
Paperback
R3,235
Discovery Miles 32 350
Risk Assessment in Air Traffic…
Javier Alberto Perez Castan, Alvaro Rodriguez Sanz
Hardcover
R3,332
Discovery Miles 33 320
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,556
Discovery Miles 35 560
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R5,145
Discovery Miles 51 450
Hayabusa2 Asteroid Sample Return Mission…
Masatoshi Hirabayashi
Paperback
R3,393
Discovery Miles 33 930
|