0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (7)
  • R250 - R500 (15)
  • R500+ (6,121)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > States of matter

Variational Theories for Liquid Crystals (Paperback): E.G. Virga Variational Theories for Liquid Crystals (Paperback)
E.G. Virga
R1,914 Discovery Miles 19 140 Ships in 12 - 17 working days

Essentially there are two variational theories of liquid crystals explained in this book. The theory put forward by Zocher, Oseen and Frank is classical, while that proposed by Ericksen is newer in its mathematical formulation although it has been postulated in the physical literature for the past two decades. The newer theory provides a better explanation of defects in liquid crystals, especially of those concentrated on lines and surfaces, which escape the scope of the classical theory. The book opens the way to the wealth of applications that will follow.

Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications (Paperback): Giacomo Giorgi, Koichi Yamashita Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications (Paperback)
Giacomo Giorgi, Koichi Yamashita
R1,442 Discovery Miles 14 420 Ships in 12 - 17 working days

Perovskites are a class of recently discovered crystals with a multitude of innovative applications. In particular, a lead role is played by organic-inorganic halide perovskites (OIHPs) in solar devices. In 2013 Science and Nature selected perovskite solar cells as one of the biggest scientific breakthroughs of that year. This book provides the first comprehensive account of theoretical aspects of perovskite solar cells, starting at an introductory level but covering the latest cutting-edge research. Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications aims to provide a theoretical standpoint on OIHPs and on their photovoltaic applications, with particular focus on the issues that are still limiting their usage in solar cells. This book explores the role that organic cations and defects play in the material properties of OIHPs and their effects on the final device, in addition to discussing the electric properties of OIHPs; the environmentally friendly alternatives to the use of lead in their structural and electronic properties; theoretical screening for OIHP-related material for solar-to-energy conversion; and the nature and the behavior of quasiparticles in OIHPs.

Ternary Alloys Based on III-V Semiconductors (Paperback): Vasyl Tomashyk Ternary Alloys Based on III-V Semiconductors (Paperback)
Vasyl Tomashyk
R1,484 Discovery Miles 14 840 Ships in 12 - 17 working days

III-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light-emitting diodes and solar cells. Because of their wide applications in a variety of devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. This new book covers all known information about phase relations in ternary systems based on III-V semiconductors. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid state physicists.

Handbook of Nanophysics - 7-Volume Set (Paperback): Klaus D Sattler Handbook of Nanophysics - 7-Volume Set (Paperback)
Klaus D Sattler
R13,583 Discovery Miles 135 830 Ships in 12 - 17 working days

Breakthroughs in nanotechnology require a firm grounding in the principles of nanophysics. Providing the framework to achieve these advances, Handbook of Nanophysics is the first comprehensive reference to cover both fundamental and applied aspects of physics at the nanoscale. Pioneering scientists from preeminent academic institutions, R&D companies, and research laboratories pave the way for new innovations in nanotechnology. Explore the frontiers of nanoscience This seven-volume set offers a sound introduction to established fundamentals in the field as well as a summary of the most significant developments in research. After discussing the theoretical principles and measurements of nanoscale systems, the organization of the set generally follows the historical development of nanoscience. Each peer-reviewed chapter presents a didactic treatment of the physics underlying the nanoscale materials and applications along with detailed experimental results. State-of-the-art scientific content is enriched with fundamental equations and illustrations, some in color. State-of-the-art research collected in one source Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work. Two of the contributors, as well as the editor of this work, are faculty members at the University of Hawaii, which cited the Handbook in a recent article.

Graphene - Synthesis and Applications (Hardcover): Wonbong Choi, Jo-Won Lee Graphene - Synthesis and Applications (Hardcover)
Wonbong Choi, Jo-Won Lee
R5,664 Discovery Miles 56 640 Ships in 12 - 17 working days

Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness, high thermal conductivity, optical transmittance, and super hydrophobicity at nanometer scale. In contrast to research on its excellent electronic and optoelectronic properties, research on the syntheses of a single sheet of graphene for industrial applications is in its nascent stages. Graphene: Synthesis and Applications reviews the advancement and future directions of graphene research in the areas of synthesis and properties, and explores applications, such as electronics, heat dissipation, field emission, sensors, composites, and energy.

Spectroscopic Techniques and Hindered Molecular Motion (Hardcover, New): Ferid Bashirov Spectroscopic Techniques and Hindered Molecular Motion (Hardcover, New)
Ferid Bashirov
R5,327 Discovery Miles 53 270 Ships in 12 - 17 working days

Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme

Advanced Thermoelectrics - Materials, Contacts, Devices, and Systems (Paperback): Zhifeng Ren, Yucheng Lan, Qinyong Zhang Advanced Thermoelectrics - Materials, Contacts, Devices, and Systems (Paperback)
Zhifeng Ren, Yucheng Lan, Qinyong Zhang
R1,644 Discovery Miles 16 440 Ships in 12 - 17 working days

This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.

Interaction of Radiation with Matter (Paperback): Hooshang Nikjoo, Shuzo Uehara, Dimitris Emfietzoglou Interaction of Radiation with Matter (Paperback)
Hooshang Nikjoo, Shuzo Uehara, Dimitris Emfietzoglou
R1,532 Discovery Miles 15 320 Ships in 12 - 17 working days

Interaction of Radiation with Matter focuses on the physics of the interactions of ionizing radiation in living matter and the Monte Carlo simulation of radiation tracks. Clearly progressing from an elementary level to the state of the art, the text explores the classical physics of track description as well as modern aspects based on condensed matter physics. The first section of the book discusses the fundamentals of the radiation field. In the second section, the authors describe the cross sections for electrons and heavy ions-the most important information needed for simulating radiation track at the molecular level. The third section details the inelastic scattering and energy loss of charged particles in condensed media, particularly liquid water. The final section contains a large number of questions and problems to reinforce learning. Designed for radiation interaction courses, this textbook is the ideal platform for teaching students in medical/health physics and nuclear engineering. It gives students a solid grounding in the physical understanding of radiation track structure in living matter, enabling them to pursue further work in radiological physics and radiation dosimetry.

Origin of Temporal (t > 0) Universe - Connecting with Relativity, Entropy, Communication, and Quantum Mechanics (Hardcover):... Origin of Temporal (t > 0) Universe - Connecting with Relativity, Entropy, Communication, and Quantum Mechanics (Hardcover)
Thomas N. Corns
R4,584 Discovery Miles 45 840 Ships in 12 - 17 working days

The essence of temporal universe creation is that any analytical solution has to comply with the boundary condition of our universe; dimensionality and causality constraints. The essence of this book is to show that everything has a price within our temporal (t > 0) universe; energy and time. In mathematics, every postulation needs proof; there exists a solution before searching for the solution. Yet science does not have seem to have a criterion as mathematics does; to prove first that a postulated science exists within our temporal universe. Without such a criterion, fictitious science emerges, as already have been happening in every day's event. In this book, the author has shown there exists a criterion for a postulated science whether or not it is existed within our universe. The author started this book from Einstein's relativity to the creation of our temporal universe. He has shown that every subspace within our universe is created by energy and time, in which subspace and time are coexisted. The important aspect is that every science has to satisfy the boundary condition of our universe; causality and dimensionality. Following up with temporal universe, the author has shown a profound relationship with the second law of thermodynamics. He examines the relationship between entropy with science as well as communication with quantum limited subspace throughout the book. The author discusses the paradox of Schroedinger's Cat (which has been debated by Einstein, Bohr, Schroedinger and many others since 1935) that triggered his discovering that Schroedinger's quantum mechanics is a timeless machine, in which he has disproved the fundamental principle of superposition within our universe. Since quantum mechanics is a virtual mathematics, he has shown that a temporal quantum machine can, in principle, be built on the top of a temporal platform. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, engineers, professors and students as a reference and research-oriented book.

An Introduction to Metamaterials and Waves in Composites (Hardcover, New): Biswajit Banerjee An Introduction to Metamaterials and Waves in Composites (Hardcover, New)
Biswajit Banerjee
R4,764 Discovery Miles 47 640 Ships in 12 - 17 working days

Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally-the book encourages readers to explore these ideas and bring them to technological maturity.

Photoelectrochemical Solar Conversion Systems - Molecular and Electronic Aspects (Paperback): Andres G. Munoz Photoelectrochemical Solar Conversion Systems - Molecular and Electronic Aspects (Paperback)
Andres G. Munoz
R1,907 Discovery Miles 19 070 Ships in 12 - 17 working days

Providing new insights into the molecular and electronic processes involved in the conversion of sunlight into chemical products, Photoelectrochemical Solar Conversion Systems: Molecular and Electronic Aspects begins with an historical overview and a survey of recent developments in the electrochemistry of semiconductors and spectroscopic techniques. It then provides a comprehensive introduction to the science of conversion cells, reviews current issues and potential directions, and covers a wide range of materials from organic to inorganic cells. Employing a tutorial organization with balanced coverage of electrochemistry and solar energy conversion, this book covers: The conversion of sunlight into chemical energy and different actual conversion concepts Electrochemical methods for the construction and characterization of electrolyte-metal-oxide-semiconductor contacts (EMOS) in the nanodimensions, the so-called nano-emitter concept, including the electrochemical formation of metal clusters of catalytic metals and the formation of passivating layers by anodization The fundamentals of electrocatalysis with emphasis on the hydrogen evolution reaction and the electrochemical CO2 reduction Classical and quantum mechanical theories of electron transfer reactions in metal-electrolyte interfaces and their relation with surface electronics The physicochemical characterization of the model system Si-SiOx-metal-electrolyte by means of modern electrochemical, surface, and spectroscopic methods Improvements of conversion efficiency by means of optical effects, for example, the generation of surface plasmons by nano-dimensioned arrangements of optically active metals

Kinetics of Phase Transitions (Paperback): Sanjay Puri, Vinod Wadhawan Kinetics of Phase Transitions (Paperback)
Sanjay Puri, Vinod Wadhawan
R1,907 Discovery Miles 19 070 Ships in 12 - 17 working days

Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally relevant effects-such as disorder, strain fields, and wetting surfaces-into studies of phase ordering dynamics. In addition, it highlights topics garnering recent interest, such as the growth of nanostructures on surfaces. This book also provides a comprehensive overview of numerical techniques, which have proven useful in studying these complex nonlinear problems.

Chemistry of Discotic Liquid Crystals - From Monomers to Polymers (Hardcover): Sandeep Kumar Chemistry of Discotic Liquid Crystals - From Monomers to Polymers (Hardcover)
Sandeep Kumar
R6,430 Discovery Miles 64 300 Ships in 12 - 17 working days

The self-contained properties of discotic liquid crystals (DLCs) render them powerful functional materials for many semiconducting device applications and models for energy and charge migration in self-organized dynamic functional soft materials. The past three decades have seen tremendous interest in this area, fueled primarily by the possibility of creating a new generation of organic semiconductors and wide viewing displays using DLCs. While a number of books on classical calamitic liquid crystals are available, there are, as yet, no books that are dedicated exclusively to the basic design principles, synthesis, and physical properties of DLCs. The first reference book to cover DLCs, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers highlights the chemistry and thermal behavior of DLCs. Divided into six chapters, each with a general description, background, and context for the concepts involved, the book begins with a basic introduction to liquid crystals, describing molecular self-assembly and various types of liquid crystals. It outlines their classification, covers their history and general applications, and focuses on DLCs and their discovery, structure, characterization, and alignment. The book goes on to examine the chemistry and physical properties of various monomeric DLCs, including 25 sections describing the synthesis and mesomorphic properties of monomeric DLCs formed by different cores. The bulk of the book covers the chemistry and mesomorphism of discotic dimers, oligomers, and polymers and concludes with a look at some applicable properties of DLCs. A comprehensive and up-to-date resource, this book is designed to be accessible and of value not just for students and researchers but also to the directors and principal investigators working in this field, providing the foundation and fuel to advance this fast-growing technological field.

Hume-Rothery Rules for Structurally Complex Alloy Phases (Hardcover): Uichiro Mizutani Hume-Rothery Rules for Structurally Complex Alloy Phases (Hardcover)
Uichiro Mizutani
R5,359 Discovery Miles 53 590 Ships in 12 - 17 working days

With a history that reaches back some 90 years, the Hume-Rothery rules were developed to provide guiding principles in the search for new alloys. Ultimately, the rules bridged metallurgy, crystallography, and physics in a way that led to the emergence of a physics of the solid state in 1930s, although the physical implications of the rules were never fully resolved. Even today, despite a revived interest brought about by the 1984 discovery of quasicrystals, much about the rules remains an enigma. Now almost a century after the rules were put forward, Hume-Rothery Rules for Structurally Complex Alloy Phases provides researchers with an insightful and applicable interpretation of the Hume-Rothery electron concentration rule. Invoking first-principle band calculations, the book emphasizes the stability of structurally complex metallic alloys (CMAs).Written by Uichiro Mizutani, long considered the most knowledgeable expert on both the history and science of Hume-Rothery, this seminal worK -- * Offers a unified interpretation of phase stabilization mechanism of CMAs in different classes * Explains how to determine the effective valency of transition metal elements * Details establishment of d-states-mediated-FsBz interactions in strongly orbital-hybridizing systems * Covers the contrast between e/a and VEC, two notions of electron concentration parameters and includes a way to differentiate between them in designing new alloys * Explores strengths and shortcomings for the theory on alloy phase stability * Discusses the latest take on electron concentration for gamma-brass This work summarizes the ongoing history of Hume-Rothery and reflects the theoretical studies that Professor Mizutani embarked upon to gain deeper understanding of the basic physics behind stabilizing effects related to electron concentration. It describes how metallic and covalent bonding styles can be harmonized to stabilize a given phase in relation to electron conc

Kinetics and Thermodynamics of Fast Particles in Solids (Paperback): Yurii Kashlev Kinetics and Thermodynamics of Fast Particles in Solids (Paperback)
Yurii Kashlev
R1,899 Discovery Miles 18 990 Ships in 12 - 17 working days

Kinetics and Thermodynamics of Fast Particles in Solids examines the kinetics and non-equilibrium statistical thermodynamics of fast charged particles moving in crystals in different modes. It follows a line of research very different from traditional ways of constructing a theory of radiation effects, which gives a purely mechanistic interpretation of particle motion. In contrast, this book takes into account the thermodynamic forces due to separation of the thermodynamic parameters of the subsystem of particles ("hot" atoms) on the parameters of the thermostat (electrons and lattice), in addition to covering the various mechanisms of collisions. Topics Include: Construction of a local kinetic equation of Boltzmann type for fast particles interacting with the conduction electrons and lattice vibrations, on the basis of the principles of Bogolyubov's kinetic theory Calculation of the equilibrium energy and angular distributions of fast particles at a depth of the order of coherence length, and the evolution of particle distribution with increasing depth of penetration of the beam Calculation of transverse quasi-temperature of channeled particles with the heating of the beam in the process of diffusion of particles in the space of transverse energies, as well as cooling the beam through a dissipative process Research in the framework of non-equilibrium thermodynamics of the relaxation kinetics of random particles, including the thermodynamics of positronium atoms moving in insulators under laser irradiation Analysis of the kinetics of hot carriers in semiconductors and thermalization of hot carriers, as well as the calculation of the statistical distribution of ejected atoms formed during the displacement cascade The book sets a new direction of the theory of radiation effects in solids-non-equilibrium statistical thermodynamics

Aperiodic Structures in Condensed Matter - Fundamentals and Applications (Paperback): Enrique Macia Barber Aperiodic Structures in Condensed Matter - Fundamentals and Applications (Paperback)
Enrique Macia Barber
R1,922 Discovery Miles 19 220 Ships in 12 - 17 working days

One of the Top Selling Physics Books according to YBP Library Services Order can be found in all the structures unfolding around us at different scales, including in the arrangements of matter and in energy flow patterns. Aperiodic Structures in Condensed Matter: Fundamentals and Applications focuses on a special kind of order referred to as aperiodic order. The book covers several topics dealing with the role of aperiodic order in numerous domains of the physical sciences and technology. It first presents the most characteristic features of various aperiodic systems. The author then describes theoretical aspects and useful mathematical approaches to properly study the physical systems. Focusing on applied issues, he discusses how to exploit aperiodic order in different technological devices. The author also examines one-, two-, and three-dimensional designs. For those new to the field of aperiodic systems, this book is an excellent guide to the many facets and applications of aperiodic structures.

Understanding Quantum Phase Transitions (Hardcover, New): Lincoln Carr Understanding Quantum Phase Transitions (Hardcover, New)
Lincoln Carr
R5,717 Discovery Miles 57 170 Ships in 12 - 17 working days

Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical methods, and novel theoretical understanding of previously intractable quantum many-body problems.

Understanding Quantum Phase Transitions organizes our current understanding of QPTs with an emphasis on examples from condensed matter physics. Bringing together 48 well known physicists involved with the theory and observation of QPTs, this unique work provides a thorough yet concise examination of the field. Each chapter takes readers through past discoveries right up through the latest research results, and then ends with open questions and unsolved problems.

  • Part I treats new concepts and directions in QPTs, from dynamics through dissipation and entanglement, and includes introductory material suitable for scientists new to the field.
  • Part II explores specific models, systems, and aspects of QPTs, including topological order, the Kondo lattice, the Jaynes-Cummings lattice, reduced dimensionality, finite-size effects and metastability, and QPTs in Bose-Einstein condensates.
  • Part III covers experiments motivated by a deeper understanding of QPTs, including quantum dots, 2D electron systems, frustrated lattices in molecular antiferromagnets, heavy fermions, and ultracold atoms in optical lattices.
  • Part IV presents advances in numerical methods used to study QPTs, including cluster Monte Carlo and the worm algorithm, matrix-product-state methods, and dynamical mean-field theory.
  • Part V looks at the relevance of QPTs beyond condensed-matter physics, including their occurrence in neutron stars, the quark-gluon plasma, cavity QED systems, and string theory.

Graduate students, post-doctoral researchers, and professional scientists who seek a deep knowledge of QPTs will all find this book very useful. Researchers in the field will enhance their appreciation of the incredible breadth of the subject in chapters covering material outside their specialties.

Handbook of Nanophysics - Nanoparticles and Quantum Dots (Paperback): Klaus D Sattler Handbook of Nanophysics - Nanoparticles and Quantum Dots (Paperback)
Klaus D Sattler
R2,019 Discovery Miles 20 190 Ships in 12 - 17 working days

In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.

Transport Phenomena in Partially Ionized Plasma (Paperback): V.A. Rozhansky, L.D. Tsendin Transport Phenomena in Partially Ionized Plasma (Paperback)
V.A. Rozhansky, L.D. Tsendin
R1,926 Discovery Miles 19 260 Ships in 12 - 17 working days

Transport phenomena in plasmas are the relatively slow processes of particle momentum and energy transport systems in a state of mechanical equilibrium. In contrast to neutral gases, these phenomena in plasmas are greatly influenced by self-consistent fields, in particular electric fields. These can produce particle and energy fluxes, in addition to those generated by the inhomogeneity of the plasma composition and temperature. As a result, the physical effects accompanying transport phenomena in plasmas are far more numerous and complicated than those in neutral gases, and the solution of corresponding problems is more difficult. The effects, however, are usually far more interesting and sometimes surprising. This book presents a systematic survey and analysis of the main mechanisms of transport phenomena in plasma and gives examples of gradually increasing complexity to illustrate these mechanisms and the relationships between them. The author pays special attention to the analysis of experimental measurements and considers the relevant processes analytically as well as qualitatively. The majority of problems dealt with in this book are of considerable practical interest, and the phenomena described often determine the main characteristics of processes and devices. Transport Phenomena in Partially Ionized Plasma will be of interest to researchers who need to know the properties of real, specific systems, as well as to engineers and advanced students in the physics of plasmas, semiconductors, various types of gas discharges and the ionosphere.

Adsorption and Diffusion in Nanoporous Materials (Paperback, 2nd edition): Rolando M. a. Roque-Malherbe Adsorption and Diffusion in Nanoporous Materials (Paperback, 2nd edition)
Rolando M. a. Roque-Malherbe
R1,483 Discovery Miles 14 830 Ships in 12 - 17 working days

Offering a materials science point of view, the author covers the theory and practice of adsorption and diffusion applied to gases in microporous crystalline, mesoporous ordered, and micro/mesoporous amorphous materials. Examples used include microporous and mesoporous molecular sieves, amorphous silica, and alumina and active carbons, akaganeites, prussian blue analogues, metal organic frameworks and covalent organic frameworks. The use of single component adsorption, diffusion in the characterization of the adsorbent surface, pore volume, pore size distribution, and the study of the parameters characterizing single component transport processes in porous materials are detailed.

Modern Magnetooptics and Magnetooptical Materials (Paperback): A.K. Zvezdin, V.A. Kotov Modern Magnetooptics and Magnetooptical Materials (Paperback)
A.K. Zvezdin, V.A. Kotov
R1,493 Discovery Miles 14 930 Ships in 12 - 17 working days

Modern Magnetooptics and Magnetooptical Materials provides a comprehensive account of the principles and applications of magnetooptics, bridging the gap between textbooks and specialist accounts in the research and review literature. The book is aimed at the graduate physicist and electrical engineer, but assumes no specialist knowledge of magnetooptics. Chapters have been designed to be reasonably independent, so that readers in search of information on a particular topic can go straight to the appropriate place in the book, with only occasional reference to material elsewhere. Divided into three main parts, the book begins with the principles of magnetooptics to provide the necessary theoretical background. This section's emphasis is on introducing practical considerations through examples taken from real-life situations. The next part surveys a wide range of magnetooptic materials, including metals, alloys, and granular structures. The final part explores applications of magnetooptics in practical devices, such as modulators, switches, memory devices, and waveguides. This book provides a thorough introduction for graduate students of physics and electrical engineering, and a useful reference for researchers.

Liquid Crystals In Complex Geometries - Formed by Polymer And Porous Networks (Paperback): GP Crawford, S Zumer Liquid Crystals In Complex Geometries - Formed by Polymer And Porous Networks (Paperback)
GP Crawford, S Zumer
R1,512 Discovery Miles 15 120 Ships in 12 - 17 working days

Focusing on the applied and basic aspects of confined liquid crystals, this book provides a current treatise of the subject matter and places it in the broader context of electrooptic applications. The book takes an interdisciplinary approach to the subject, combining basic principles of physics, chemistry, polymer science, materials science and engineering.

Nuclear Matter Theory (Hardcover): Omar Benhar, Stefano Fantoni Nuclear Matter Theory (Hardcover)
Omar Benhar, Stefano Fantoni
R4,733 Discovery Miles 47 330 Ships in 12 - 17 working days

Authored by two of the most respected experts in the field of nuclear matter, this book provides an up-to-date account of developments in nuclear matter theory and a critical comparison of the existing theoretical approaches in the field. It provides information needed for researchers working with applications in a variety of research fields, ranging from nuclear physics to astrophysics and gravitational physics, and the computational techniques discussed in the book are relevant for the broader condensed matter and quantum fluids community. The first book to provide an up-to-date and comprehensive overview of nuclear matter theory Authored by two world-leading academics in this field Includes a description of the most advanced computational techniques and a discussion of state-of-the art applications, such as the study of gravitational-wave emission from neutron stars

Waves and Oscillations in Plasmas (Hardcover, 2nd edition): Hans L. Pecseli Waves and Oscillations in Plasmas (Hardcover, 2nd edition)
Hans L. Pecseli
R5,683 Discovery Miles 56 830 Ships in 12 - 17 working days

Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America. Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more. Features: Presents a simple physical interpretation of basic problems is presented where possible Supplies a complete summary of classical papers and textbooks placed in the proper context Includes worked examples, exercises, and problems with general applicability

21st Century Nanoscience - A Handbook - Exotic Nanostructures and Quantum Systems (Volume Five) (Hardcover): Klaus D Sattler 21st Century Nanoscience - A Handbook - Exotic Nanostructures and Quantum Systems (Volume Five) (Hardcover)
Klaus D Sattler
R5,408 Discovery Miles 54 080 Ships in 12 - 17 working days

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Skyrmions and Hall Transport
Bom Soo Kim Hardcover R3,573 Discovery Miles 35 730
Atomic Force Microscopy for Energy…
Cai Shen Hardcover R4,665 Discovery Miles 46 650
The Theory of Composites
Graeme W. Milton Paperback R2,850 Discovery Miles 28 500
Physical Models for Quantum Wires…
Jean-Pierre Leburton Hardcover R8,192 Discovery Miles 81 920
How to Make an Apple Pie from Scratch…
Harry Cliff Paperback R280 R219 Discovery Miles 2 190
Gas Tables for Compressible Flow…
Paperback R728 Discovery Miles 7 280
Unifying Physics of Accelerators, Lasers…
Andrei Seryi, Elena Seraia Paperback R1,856 Discovery Miles 18 560
How to Make an Apple Pie from Scratch…
Harry Cliff Paperback R365 R285 Discovery Miles 2 850
21st Century Nanoscience - A Handbook…
Klaus D Sattler Paperback R1,474 Discovery Miles 14 740
Cosmic Ray Physics - An Introduction to…
Veronica Bindi, Mercedes Paniccia, … Paperback R1,637 Discovery Miles 16 370

 

Partners