![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
The monograph reviews various aspects of electronic properties of Dirac and Weyl semimetals. After a brief discussion of 2D Dirac semimetals, a comprehensive review of 3D materials is given. The description starts from an overview of the topological properties and symmetries of Dirac and Weyl semimetals. In addition, several low-energy models of Dirac and Weyl quasiparticles are presented. The key ab initio approaches and material realizations are given. The monograph includes detailed discussions of the surface Fermi arcs, anomalous transport properties, and collective modes of Dirac and Weyl semimetals. Superconductivity in these materials is briefly addressed.
This practical and unique textbook explains the core areas of molecular spectroscopy as a classical teacher would. The author carefully explores and explains each concept, walking side by side with the student through carefully constructed text, pedagogy, and derivations to ensure comprehension of the basics before approaching higher level topics. The author incorporates both electric resonance and magnetic resonance in the textbook. Uses boxes to explain more difficult topics and provides derivations to demonstrate "how and why". Includes coverage of electronic and NMR spectroscopy, both in sufficient detail. Discusses the density matrix method and its use in electronic spectroscopy before addressing it in NMR. Includes a chapter on Vibrational and Rotational Coherence Spectroscopy. Each chapter ends with problems with varying level of difficulty.
This title covers the fundamentals of carbon nanomaterials in a logical and clear manner to make concepts accessible to researchers from different disciplines. It summarizes in a comprehensive manner recent technological and scientific accomplishments in the area of carbon nanomaterials and their application in lithium ion batteries The book also addresses all the components anodes, cathodes and electrolytes of lithium ion battery and discusses the technology of lithium ion batteries that can safely operate at high temperature.
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.
Certain small solid particles are surface-active at fluid interfaces and thus are able to stabilize materials previously considered impossible to stabilize in their absence. Liquid marbles, particle-coated non-sticking liquid droplets, represent one of these materials. Preparation of liquid marbles was described only about 15 years ago and they are now widely studied by many research groups and numerous applications of liquid marbles have been advanced. The book is written for postgraduates and researchers working on the area who are training to become chemists, soft matter physicists, materials scientists, and engineers.
This book is the third in a series of 4 books issued yearly as a deliverable of the research school established within the European Network of Excellence CMA (for Complex Metallic Alloys). It is written by reputed experts in the fields of surface physics and chemistry, metallurgy and process engineering, combining expertise found inside as well as outside the network.The CMA network focuses on the huge group of largely unknown multinary alloys and compounds formed with crystal structures based on giant unit cells containing clusters, with many tens or up to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties, which are mutually excluded in conventional materials: metallic electric conductivity combined with low thermal conductivity, combination of good light absorption with high-temperature stability, combination of high metallic hardness with reduced wetting by liquids, electrical and thermal resistance tuneable by composition variation, excellent resistance to corrosion, reduced cold-welding and adhesion, enhanced hydrogen storage capacity and light absorption, etc.The series of books will concentrate on: development of fundamental knowledge with the aim of understanding materials phenomena, technologies associated with the production, transformation and processing of knowledge-based multifunctional materials, surface engineering, support for new materials development and new knowledge-based higher performance materials for macro-scale applications.
This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has been added, with comparisons of the analysis of resonances using guiding center results.A new chapter on the use of lithium lined walls has been added, a promising means of lowering the complexity and cost of full scale fusion reactors. A section on nonlocal transport has been added, including an analysis of Levy flight simulations of ion transport in the reversed field pinch in Padova, RFX.
This book helps you understand the basic properties of semiconductor quantum wells and superlattices and describes how they can be utilized for long-wavelength infrared detectors and imaging arrays. Includes 111 illustrations and 237 equations.
Vacuum technology finds itself in many areas of industry and research. These include materials handling, packaging, gas sampling, filtration, degassing of oils and metals, thin-film coating, electron microscopy, particle acceleration, and impregnation of electrical components. It is vital to design systems that are appropriate to the application, and with so many potential solutions this can become overwhelming. Vacuum Technique provides an overview of vacuum technology, its different design methodologies, and the underlying theory. The author begins with a summary of the properties of low-pressure gases, then moves on to describe mathematical modeling of gas transfer in the vacuum system, the operation of pumps and gauges, computer-aided synthesis and analysis of systems, and the design of different vacuum systems. In particular, the author discusses the structure and characteristics of low, middle, high, and superhigh vacuum systems, as well as the characteristics of joints, materials, movement inputs, and all aspects of production technology and construction standards. Using specific examples rather than describing the various elements, Vacuum Technique supplies engineers, technicians, researchers, and students with needed expertise and a comprehensive guide to designing, selecting, and using an appropriate vacuum system for a specific purpose.
The theoretical methods of quantum chemistry have matured to the point that accurate predictions can be made and experiments can be understood for a wide range of important gas-phase phenomena. A large part of this success can be attributed to the maturation of hierarchies of approximation, which allow one to approach very high accuracy, provided that sufficient computational resources are available. Until recently, these hierarchies have not been available in condensed-phase chemistry, but recent advances in the field have now led to a group of methods that are capable of reaching this goal. Accurate Condensed-Phase Quantum Chemistry addresses these new methods and the problems to which they can be applied. The book begins with an overview of periodic treatments of electron correlation, with an emphasis on the algorithmic features responsible for their computational efficiency. The first section of the book: Describes the Laplace-transform approach to periodic second-order perturbation theory (MP2) Examines local and density fitted schemes for MP2 in crystalline systems Presents test calculations for a variety of systems with small and medium-sized unit cells The next section focuses on methods based on treatment of the periodic solid in terms of fragments. This part of the book: Explores the incremental many-body scheme for electron correlation in solids, and describes progress towards metals and molecules on surfaces Describes the hierarchical method as an alternative fragment-based approach to electron correlation in crystalline solids, using conventional molecular electronic structure methods Examines electrostatically embedded many-body expansion for large systems, with an emphasis on molecular clusters and molecular liquids Explores delocalized and localized orbital approaches to the electronic structures of periodic and non-periodic solids Lastly, the book describes a practical method by which conventional molecular electronic structure theory can be applied to molecular liquids and solids. Along with the methodology, it presents results on small to medium water clusters as well as on liquid water.
The importance of the effective mass (EM) is already well known since the inception of solid-state physics and this first-of-its-kind monograph solely deals with the quantum effects in EM of heavily doped (HD) nanostructures. The materials considered are HD quantum confined nonlinear optical, III-V, II-VI, IV-VI, GaP, Ge, PtSb2, stressed materials, GaSb, Te, II-V, Bi2Te3, lead germanium telluride, zinc and cadmium diphosphides, and quantum confined III-V, II-VI, IV-VI, and HgTe/CdTe super-lattices with graded interfaces and effective mass super-lattices. The presence of intense light waves in optoelectronics and strong electric field in nano-devices change the band structure of semiconductors in fundamental ways, which have also been incorporated in the study of EM in HD quantized structures of optoelectronic compounds that control the studies of the HD quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under intense external fields has also been discussed in this context. The influences of magnetic quantization, crossed electric and quantizing fields, electric field and light waves on the EM in HD semiconductors and super-lattices are discussed.The content of this book finds twenty-eight different applications in the arena of nano-science and nano-technology. This book contains 200 open research problems which form the integral part of the text and are useful for both PhD aspirants and researchers in the fields of condensed matter physics, materials science, solid state sciences, nano-science and technology and allied fields in addition to the graduate courses in semiconductor nanostructures. The book is written for post-graduate students, researchers, engineers and professionals in the fields of condensed matter physics, solid state sciences, materials science, nanoscience and technology and nanostructured materials in general.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas
Emphasizing physics over mathematics, this popular, classroom-tested text helps advanced undergraduates acquire a sound physical understanding of wave phenomena. This second edition of Oscillations and Waves: An Introduction contains new widgets, animations in Python, and exercises, as well as updated chapter content throughout; continuing to ease the difficult transition for students between lower-division courses that mostly encompass algebraic equations and upper-division courses that rely on differential equations. Assuming familiarity with the laws of physics and college-level mathematics, the author covers aspects of optics that crucially depend on the wave-like nature of light, such as wave optics. Examples explore discrete mechanical, optical, and quantum mechanical systems; continuous gases, fluids, and elastic solids; electronic circuits; and electromagnetic waves. The text also introduces the conventional complex representation of oscillations and waves during the discussion of quantum mechanical waves. Features: Fully updated throughout and featuring new widgets, animations, and end of chapter exercises to enhance understanding Offers complete coverage of advanced topics in waves, such as electromagnetic wave propagation through the ionosphere Includes examples from mechanical systems, elastic solids, electronic circuits, optical systems, and other areas
Soft matters differ from hard ones essentially due to former's relatively weak interaction which is comparable to kBTrm (Trm = room temperature) - this results in the major characteristics of soft matters such as 'strong reactions upon weak actions'.Developed over a period of 10 years through soft matter physics lectures for both graduate and undergraduate students in Fudan University, this textbook not only concentrates on the basic interactions inside soft matters through a reductionist approach, but also introduces the exploratory works on the complexity of soft matters in methods of system science.Other important topics in soft matter physics which are included involve static and dynamic electrorheological (ER) effects - an important 'model animal' in the subject, granular media - which explains the thermodynamics of sands and its dynamics, and the Onsager principle of least energy dissipation rate which has been adapted in this textbook to see how it governs the optimal paths of a system's deviation from and restoration to equilibrium.The subject of soft matter physics is still in its infancy, making it highly exciting and attractive. If you like a challenging subject, you will most certainly fall in love with soft matter physics at first read!
This book is divided in two parts. Part I provides a brief but accurate summary of all the basic ideas, theories, methods, and conspicuous results of structure analysis and molecular modelling of the condensed phases of organic compounds: quantum chemistry, the intermolecular potential, force field and molecular dynamics methods, structural correlation, and thermodynamics. This Part is written in simple and intuitive form, so that the reader may easily find there the essential background for the discussions in the second part. Part II exposes the present status of studies in the analysis, categorization, prediction and control, at a molecular level, of intermolecular interactions in liquids, solutions, mesophases, and crystals. The main focus is here on the links between energies, structures, and chemical or physical properties.
This book consolidates the older and more recent concepts on weakly-interacting fermions where traditional many-body techniques are adequate. Targeting primarily the advanced undergraduates and graduates, the author has included plenty of examples and problems from contemporary topics of research.
Our understanding of the properties of materials, from drugs and proteins to catalysts and ceramics, is almost always based on structural information. This book describes the new developments in the realm of powder diffraction which make it possible for scientists to obtain such information even from polycrystalline materials. Written and edited by experts active in the field, and covering both the fundamental and applied aspects of structure solution from powder diffraction data, this book guides both novices and experienced practitioners alike through the maze of possibilities.
Topological Phases of Matter are an exceptionally dynamic field of research: several of the most exciting recent experimental discoveries and conceptual advances in modern physics have originated in this field. These have generated new, topological, notions of order, interactions and excitations. This text provides an accessible, unified and comprehensive introduction to the phenomena surrounding topological matter, with detailed expositions of the underlying theoretical tools and conceptual framework, alongside accounts of the central experimental breakthroughs. Among the systems covered are topological insulators, magnets, semimetals, and superconductors. The emergence of new particles with remarkable properties such as fractional charge and statistics is discussed alongside possible applications such as fault-tolerant topological quantum computing. Suitable as a textbook for graduate or advanced undergraduate students, or as a reference for more experienced researchers, the book assumes little prior background, providing self-contained introductions to topics as varied as phase transitions, superconductivity, and localisation.
Features Edited by established authorities in the field, with chapter contributions from subject area specialists. Provides a comprehensive review of the field. Up to date with the latest developments and cutting-edge research.
This book provides a relatively complete introduction to the methods used in computational condensed matter. A wide range of electronic structure theories are introduced, including traditional quantum chemistry methods, density functional theory, many-body perturbation theory, and more. Molecular dynamics simulations are also discussed, with extensions to enhanced sampling and free-energy calculation techniques including umbrella sampling, meta-dynamics, integrated tempering sampling, etc. As a further extension beyond the standard Born-Oppenheimer molecular dynamics, some simulation techniques for the description of quantum nuclear effects are also covered, based on Feynman's path-integral representation of quantum mechanics. The book aims to help beginning graduate students to set up a framework of the concepts they should know before tackling the physical/chemical problems they will face in their research.
Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics-semiconductors, with their variable densities and effective masses. The author develops Green's functions starting from equilibrium Green's functions and going through modern time-dependent approaches to non-equilibrium Green's functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.
Mathematical Modelling of Waves in Multi-Scale Structured Media presents novel analytical and numerical models of waves in structured elastic media, with emphasis on the asymptotic analysis of phenomena such as dynamic anisotropy, localisation, filtering and polarisation as well as on the modelling of photonic, phononic, and platonic crystals. |
![]() ![]() You may like...
All About Science: Philosophy, History…
Lui Lam, Maria Burguete
Hardcover
R4,435
Discovery Miles 44 350
Woman Evolve - Break Up With Your Fears…
Sarah Jakes Roberts
Paperback
![]()
|