![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
Fluorinated Liquid Crystals: Design of Soft Nanostructures and Increased Complexity of Self-Assembly by Perfluorinated Segments, by Carsten Tschierske Liquid Crystalline Crown Ethers, by Martin Kaller and Sabine Laschat Star-Shaped Mesogens - Hekates: The Most Basic Star Structure with Three Branches, by Matthias Lehmann DNA-Based Soft Phases, by Tommaso Bellini, Roberto Cerbino and Giuliano Zanchetta Polar and Apolar Columnar Phases Made of Bent-Core Mesogens, by N. Vaupotic, D. Pociecha and E. Gorecka Spontaneous Achiral Symmetry Breaking in Liquid Crystalline Phases, by H. Takezoe Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles, by Oana Stamatoiu, Javad Mirzaei, Xiang Feng and Torsten Hegmann Stimuli-Responsive Photoluminescent Liquid Crystals, by Shogo Yamane, Kana Tanabe, Yoshimitsu Sagara and Takashi Kato
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.
Synchrotron radiation sources are now used routinely by thousands of research scientists and engineers throughout the world to perform experiments in biology, physics, materials science, chemistry and so on. The very best of these sources are based upon the use of undulator and wiggler insertion devices that can enhance the intensity of the radiation by many orders of magnitude. This book, which is part of the Oxford Series on Synchrotron Radiation, brings together both a detailed step by step description of the radiation properties from these devices as well as an explanation of the practical realization of actual devices using available magnet technologies. The book is aimed at not just the users but also the providers of synchrotron radiation. It takes the reader through the fundamental issues, and provides sufficient depth so as to be an indispensable reference to light source designers, accelerator physicists and insertion device specialists. The approach taken is to provide the reader with all of the essential information and to back this up with practical examples and illustrations wherever possible.
Introduction and Overview (R.Z. Bachrach). Advances from a Technique Perspective: Absorption: Surface Absorption Near Edge Structure: XANES (A. Bianconi, A. Marcelli). Surface EXAFS (J.E. Rowe). Photoemission Spectroscopy: Angle Resolved Photoemission (W. Eberhardt). Surface Core Level Spectroscopy (A. Flodstrom et al.). Resonant Photoemission (J.W. Allen). Ion Spectroscopy: Photon Stimulated Desorption (V. Rehn, R.A. Rosenberg). Diffraction and Scattering: Grazing Incidence XRay Scattering (P.H. Fouss et al.). Photo and Auger Electron Diffraction (C.S. Fadley). Index.
This book provides an overview of hydrogen production from renewable resources such as ethanol using plasma or plasma-catalytic technologies. Further, it presents a balanced and comprehensive treatment of the core principles, novel plasma reactors and diagnostics, as well as state-of-the-art plasma energy applications. It brings together technological advances and research on plasma generators and their application in hydrogen production, including plasma-assisted alcohol reforming technology, plasma-catalytic alcohol reforming technology, the alcohol reforming mechanism, models of alcohol reforming for hydrogen production, the energy balance of hydrogen production from ethanol, and a comparison of alcohol reforming assisted by different plasma treatment systems. As such, it offers a valuable reference guide for scientists, engineers and graduate students in the fields of energy and environment, plasma physics and chemistry.
The book presents an advanced but accessible overview of some of the most important sub-branches of magnetohydrodynamics (MHD): stability theory, magnetic topology, relaxation theory and magnetic reconnection. Although each of these subjects is often treated separately, in practical MHD applications they are normally inseparable. MHD is a highly active field of research.The book is written for advanced undergraduates, postgraduates and researchers working on MHD-related research in plasma physics and fluid dynamics.
The inner magnetosphere plasma is a very unique composition of different plasma particles and waves. It covers a huge energy plasma range with spatial and time variations of many orders of magnitude. In such a situation, the kinetic approach is the key element, and the starting point of the theoretical description of this plasma phenomena which requires a dedicated book to this particular area of research.
This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.
This book covers key theoretical and practical aspects of optics, photonics and lasers. It addresses optical instrumentation and metrology, photonic and optoelectronic materials and devices, nanophotonics, organic and bio-photonics and high-field phenomena. Researchers, engineers, students and practitioners interested in any of these fields will find a wealth of new methods, technologies, advanced prototypes, systems, tools and techniques, as well as general surveys outlining future directions.
This thesis presents neutron scattering data that contribute to the understanding of four distinct areas of condensed matter physics, including iso-compositional liquid-liquid phase transitions and the glass formation in rare earth doped BaTi2O5. In situ aerodynamic levitation with laser heating was combined with neutron scattering in order to study both liquid-liquid phase transitions in (Y2O3)x(Al2O3)1-x and the atomic and magnetic ordering in liquid Invar. Among several significant results, obtained in this case from small angle neutron scattering, wasthe absence of a phase transition across a range of temperatures and compositions in the yttria aluminates.As these are a principal system in which liquid-liquid phase transitions have been hypothesized, this is an important contribution in a contentious area."
This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.
This book mainly focuses on the theoretical and experimental study of non-Fourier heat conduction behavior. A novel thermomass theory is used as the theoretical basis, which provides a general heat conduction equation for the accurate prediction of non-Fourier heat conduction. In order to prove the validity of this thermomass theory, a large current was used to heat the metallic nanofilm at the minimum temperature of 3 K. The measured average temperature of the nanofilm was notably higher than the prediction of Fourier's heat diffusion equation, while matching well with the general heat conduction equation. This is the first time that steady non-Fourier heat conduction has been observed. Moreover, this book concerns the role of electron-phonon interaction in metallic nanofilms, which involves the breakdown of the Wiedemann-Franz law at low temperatures and interfacial thermal resistance at femtosecond timescales. Readers will find useful information on non-Fourier heat conduction and the latest advances in the study of charge and heat transport in metallic nanofilms.
Solid State Physics, Volume 72, the latest release in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters authored by an international board of experts. Chapters in this release include Roadmap: The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, and more.
This book presents the fundamental concepts of the theory, illustrated by numerous examples of astrophysical applications. Classical concepts are combined with new developments and the authors demarcate what is well established and what is still under debate. To book illustrates how apparently complicated phenomena can be addressed and understood using well-known physical principles and equations within appropriate approximations and simplifications. For this purpose, a number of astrophysical examples are considered in greater detail than what is normally presented in a regular textbook. In particular, a number of nonlinear self-consistent models are considered, which is motivated by the latest observational data and modern theory.
This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.
This book addresses the application of methods used in statistical physics to complex systems-from simple phenomenological analogies to more complex aspects, such as correlations, fluctuation-dissipation theorem, the concept of free energy, renormalization group approach and scaling. Statistical physics contains a well-developed formalism that describes phase transitions. It is useful to apply this formalism for damage phenomena as well. Fractals, the Ising model, percolation, damage mechanics, fluctuations, free energy formalism, renormalization group, and scaling, are some of the topics covered in Statistical Physics of Phase Transitions.
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
This book presents experimental and theoretical results on extremely powerful plasma generators. It addresses pulsed electrical mega-ampere arcs and the mechanisms of energy transfer from the arc into hydrogen, helium and air under pressures up to 250 MPa and currents up to 2 MA. Extreme plasma parameters and increased energy density in the arc were achieved. It was found experimentally that increasing the initial gas pressure to hundreds of MPa leads to improved arc stability, high efficiency of energy transfer from arc to gas, and plasma enthalpy growth. The data obtained data provides the basis for the development of electrophysical devices with high energy density, e.g. high intensity sources for visible, UV and X-ray irradiation for laser pumping, generators of high enthalpy plasma jets, and plasma chemical reactors.
This book provides a systematic presentation of the principles and practices behind the synthesis and functionalization of graphene and grapheme oxide (GO), as well as the fabrication techniques for transparent conductors from these materials. Transparent conductors are used in a wide variety of photoelectronic and photovoltaic devices, such as liquid crystal displays (LCDs), solar cells, optical communication devices, and solid-state lighting. Thin films made from indium tin oxide (ITO) have thus far been the dominant source of transparent conductors, and now account for 50% of indium consumption. However, the price of Indium has increased 1000% in the last 10 years. Graphene, a two-dimensional monolayer of sp2-bonded carbon atoms, has attracted significant interest because of its unique transport properties. Because of their high optical transmittance and electrical conductivity, thin film electrodes made from graphene nanosheets have been considered an ideal candidate to replace expensive ITO films. Graphene for Transparent Conductors offers a systematic presentation of the principles, theories and technical practices behind the structure-property relationship of the thin films, which are the key to the successful development of high-performance transparent conductors. At the same time, the unique perspectives provided in the applications of graphene and GO as transparent conductors will serve as a general guide to the design and fabrication of thin film materials for specific applications.
This book describes the history of and recent developments in cobaltite and the spin-crossover (SC) phenomena. It offers readers an overview of essential research conducted on cobaltite and introduces them to the fundamentals of condensed matter physics research. The book consists of two parts. The first part reviews SC phenomena, covering the fundamental physics of SC phenomena and basic material properties of cobaltite. The second part focuses on recent topics in SC cobaltite, including the optical and dynamical features of cobaltite, thin material fabrication, and thermoelectric properties. The comprehensive coverage and clearly structured topics will especially appeal to newcomers to the field of state-of-the-art research on cobaltite and SC physics.
The book is devoted to the modern theory and experimental manifestation of Polarization Bremsstrahlung (PB) which arises due to scattering of charged particles from various targets: atoms, nanostructures (including atomic clusters, nanoparticle in dielectric matrix, fullerens, graphene-like two-dimensional atomic structure) and in condensed matter (monocrystals, polycrystals, partially ordered crystals and amorphous matter) The present book addresses mainly researchers interested in the radiative processes during the interaction between fast particles and matter. It also will be useful for post-graduate students specializing in radiation physics and related fields.
In-situ scattering and diffraction measurements using synchrotron and neutron beam lines have become a viable tool to look at the non-equilibrium processing of advanced materials. This volume presents the subject from the theoretical and experimental standpoint, in order to provide a closer insight into the different synchrotron and neutron diffraction techniques as well as innovative microscopy techniques. It addresses the following items: - Phase detection and quantification - In-situ welding experiments - Stress/strain build-up - Model development and Simulation - Analysis tools and programming
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Written by the inventor of Raman lasers, this reference describes their developments, fundamentals, operation characteristics and application methods. It is for optoelectronic researchers, system engineers and researchers in nonlinear optics, crystal optics and metrology. |
![]() ![]() You may like...
Handbook of Research on Big Data…
Jose Machado, Hugo Peixoto, …
Hardcover
R12,092
Discovery Miles 120 920
Transitional Justice - The Legal…
Gerhard Werle, Moritz Vormbaum
Hardcover
|