![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
This research-level monograph on harmonic maps between singular spaces sets out much new material on the theory, bringing all the research together for the first time in one place. Riemannian polyhedra are a class of such spaces that are especially suitable to serve as the domain of definition for harmonic maps. Their properties are considered in detail, with many examples being given, and potential theory on Riemmanian polyhedra is also considered. The work will serve as a concise source and reference for all researchers working in this field or a similar one.
This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a solid understanding of basic algebra.
Topological surgery is a mathematical technique used for creating new manifolds out of known ones. In this book the authors observe that it also occurs in natural phenomena of all scales: 1-dimensional surgery happens during DNA recombination and when cosmic magnetic lines reconnect; 2-dimensional surgery happens during tornado formation and cell mitosis; and they conjecture that 3-dimensional surgery happens during the formation of black holes from cosmic strings, offering an explanation for the existence of a black hole's singularity. Inspired by such phenomena, the authors present a new topological model that extends the formal definition to a continuous process caused by local forces. Lastly, they describe an intrinsic connection between topological surgery and a chaotic dynamical system exhibiting a "hole drilling" behavior. The authors' model indicates where to look for the forces causing surgery and what deformations should be observed in the local submanifolds involved. These predictions are significant for the study of phenomena exhibiting surgery and they also open new research directions. This novel study enables readers to gain a better understanding of the topology and dynamics of various natural phenomena, as well as topological surgery itself and serves as a basis for many more insightful observations and new physical implications.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.< The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.
This book is a significant companion text to the existing literature on continuum theory. It opens with background information of continuum theory, so often missing from the preceding publications, and then explores the following topics: inverse limits, the Jones set function T, homogenous continua, and n-fold hyperspaces. In this new edition of the book, the author builds on the aforementioned topics, including the unprecedented presentation of n-fold hyperspace suspensions and induced maps on n-fold hyperspaces. The first edition of the book has had a remarkable impact on the continuum theory community. After twelve years, this updated version will also prove to be an excellent resource within the field of topology.
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.
This book examines and explores Jacques Lacan's controversial topologisation of psychoanalysis, and seeks to persuade the reader that this enterprise was necessary and important. In providing both an introduction to a fundamental component of Lacan's theories, as well as readings of texts that have been largely ignored, it provides a thorough critical interpretation of his work. Will Greenshields argues that Lacan achieved his most pedagogically clear and successful presentations of his most essential and notoriously complex concepts - such as structure, the subject and the real - through the deployment of topology. The book will help readers to better understand Lacan, and also those concepts that have become prevalent in various intellectual discourses such as contemporary continental philosophy, politics and the study of ideology, and literary or cultural criticism.
This second of two Exercises in Analysis volumes covers problems in five core topics of mathematical analysis: Function Spaces, Nonlinear and Multivalued Maps, Smooth and Nonsmooth Calculus, Degree Theory and Fixed Point Theory, and Variational and Topological Methods. Each of five topics corresponds to a different chapter with inclusion of the basic theory and accompanying main definitions and results,followed by suitable comments and remarks for better understanding of the material. Exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the material. Exercises are denoted by degree of difficulty. Instructors teaching courses that include one or all of the above-mentioned topics will find the exercises of great help in course preparation. Researchers in analysis may find this Work useful as a summary of analytic theories published in one accessible volume.
In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The work is highly visual, and illustrated with many beautiful diagrams revealing this unanticipated aspect of the physics of waves. Linear superpositions of waves create interference patterns, which means in some places they strengthen one another, while in others they completely cancel each other out. This latter phenomenon occurs on 'vortex lines' in three dimensions. In general wave superpositions modelling e.g. chaotic cavity modes, these vortex lines form dense tangles that have never been visualised on the large scale before, and cannot be analysed mathematically by any known techniques.
This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept that would become its most distinctive feature: the program was not determined beforehand by the organizers, but during the meeting by all participants in an open discussion. This ensured that the talks would be on the latest developments in mathematics and that many important results were presented at the conference for the first time. Written by leading mathematicians, the papers in this volume cover various topics from algebraic geometry, topology, analysis, operator theory, and representation theory and display the breadth and depth of pure mathematics that has always been characteristic of the Arbeitstagung.
This 4-th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Leaving aside the practical questions that arise during the selection of a 'good' distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available distances. As well as providing standalone introductions and definitions, the encyclopedia facilitates swift cross-referencing with easily navigable bold-faced textual links to core entries. In addition to distances themselves, the authors have collated numerous fascinating curiosities in their Who's Who of metrics, including distance-related notions and paradigms that enable applied mathematicians in other sectors to deploy research tools that non-specialists justly view as arcane. In expanding access to these techniques, and in many cases enriching the context of distances themselves, this peerless volume is certain to stimulate fresh research.
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point $P$ goes around a fixed point $Q$, provided that $P$ travels on a path that never goes through $Q$ and that the final position of $P$ is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra), guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem), explain why every simple closed curve has an inside and an outside (the Jordan curve theorem), relate calculus to curvature and the singularities of vector fields (the Hopf index theorem), allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators), generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses. This book is published in cooperation with Mathematics Advanced Study Semesters.
This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold's groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.
This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincare conjecture, the Yau-Tian-Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger-Yau-Zaslow conjecture on mirror symmetry, the relative Yau-Tian-Donaldson conjecture in Kahler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.
The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks:- Geometry and topology of fibre bundles,- Clifford algebras, spin structures and Dirac operators,- Gauge theory.Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory.The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces.Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory.The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.
In the more than 100 years since the fundamental group was first introduced by Henri Poincare it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, -adic, p-adic, pro-algebraic and motivic. It explores a wealth of topics that range from anabelian geometry (in particular the section conjecture), the -adic polylogarithm, gonality questions of modular curves, vector bundles in connection with monodromy, and relative pro-algebraic completions, to a motivic version of Minhyong Kim's non-abelian Chabauty method and p-adic integration after Coleman. The editor has also included the abstracts of all the talks given at the Heidelberg meeting, as well as the notes on Coleman integration and on Grothendieck's fundamental group with a view towards anabelian geometry taken from a series of introductory lectures given by Amnon Besser and Tamas Szamuely, respectively."
This book aims to put strong reasonable mathematical senses in notions of objectivity and subjectivity for consistent estimations in a Polish group by using the concept of Haar null sets in the corresponding group. This new approach - naturally dividing the class of all consistent estimates of an unknown parameter in a Polish group into disjoint classes of subjective and objective estimates - helps the reader to clarify some conjectures arising in the criticism of null hypothesis significance testing. The book also acquaints readers with the theory of infinite-dimensional Monte Carlo integration recently developed for estimation of the value of infinite-dimensional Riemann integrals over infinite-dimensional rectangles. The book is addressed both to graduate students and to researchers active in the fields of analysis, measure theory, and mathematical statistics.
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces-stretching students' minds as they learn to visualize new possibilities for the shape of our universe. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to expand their understanding of space. Features of the Third Edition: Full-color figures throughout "Picture proofs" have replaced algebraic proofs Simpler handles-and-crosscaps approach to surfaces Updated discussion of cosmological applications Intuitive examples missing from many college and graduate school curricula About the Author: Jeffrey R. Weeks is a freelance geometer living in Canton, New York. With support from the U.S. National Science Foundation, the MacArthur Foundation and several science museums, his work spans pure mathematics, applications in cosmology and-closest to his heart-exposition for the general public.
This thesis describes a new connection between algebraic geometry, topology, number theory and quantum field theory. It offers a pedagogical introduction to algebraic topology, allowing readers to rapidly develop basic skills, and it also presents original ideas to inspire new research in the quest for dualities. Its ambitious goal is to construct a method based on the universal coefficient theorem for identifying new dualities connecting different domains of quantum field theory. This thesis opens a new area of research in the domain of non-perturbative physics-one in which the use of different coefficient structures in (co)homology may lead to previously unknown connections between different regimes of quantum field theories. The origin of dualities is an issue in fundamental physics that continues to puzzle the research community with unexpected results like the AdS/CFT duality or the ER-EPR conjecture. This thesis analyzes these observations from a novel and original point of view, mainly based on a fundamental connection between number theory and topology. Beyond its scientific qualities, it also offers a pedagogical introduction to advanced mathematics and its connection with physics. This makes it a valuable resource for students in mathematical physics and researchers wanting to gain insights into (co)homology theories with coefficients or the way in which Grothendieck's work may be connected with physics. |
![]() ![]() You may like...
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon
Hardcover
R3,744
Discovery Miles 37 440
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,473
Discovery Miles 44 730
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,211
Discovery Miles 22 110
A Journey Through Discrete Mathematics…
Martin Loebl, Jaroslav Nesetril, …
Hardcover
R4,876
Discovery Miles 48 760
Gromov-Witten Theory of Quotients of…
Hiroshi Iritani, Todor Milanov, …
Paperback
R2,152
Discovery Miles 21 520
Advances in Metric Fixed Point Theory…
Yeol Je Cho, Mohamed Jleli, …
Hardcover
R3,783
Discovery Miles 37 830
|