![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology
Most texts on algebraic topology emphasize homological algebra, with topological considerations limited to a few propositions about the geometry of simplicial complexes. There is much to be gained however, by using the more sophisticated concept of cell (CW) complex. Even for simple computations, this concept ordinarily allows us to bypass much tedious algebra and often gives geometric insight into the homology and homotopy theory of a space. For example, the easiest way to calculate and interpret the homology of Cpn, complex projective n-space, is by means of a cellular decomposition with only n+ 1 cells. Also, by a suitable construction we can "realize" the sin gular complex of a space as a CW complex and perhaps thus give a more geometric basis for some arguments involving singular homology theory for general spaces and a more concrete basis for singular ho motopy type. As a fInal example, if we start with the category of sim plicial complexes and maps, common topological constructions such as the formation of product spaces, identifIcation spaces, and adjunction spaces lead us often into the category of CW complexes. These topics, among others, are usually not treated thoroughly in a standard text, and the interested student must fInd them scattered through the literature. This book is a study of CW complexes. It is intended to supplement and be used concurrently with a standard text on algebraic topology."
Compactness in topology and finite generation in algebra are nice properties to start with. However, the study of compact spaces leads naturally to non-compact spaces and infinitely generated chain complexes; a classical example is the theory of covering spaces. In handling non-compact spaces we must take into account the infinity behaviour of such spaces. This necessitates modifying the usual topological and algebraic cate gories to obtain "proper" categories in which objects are equipped with a "topologized infinity" and in which morphisms are compatible with the topology at infinity. The origins of proper (topological) category theory go back to 1923, when Kere kjart6 [VT] established the classification of non-compact surfaces by adding to orien tability and genus a new invariant, consisting of a set of "ideal points" at infinity. Later, Freudenthal [ETR] gave a rigorous treatment of the topology of "ideal points" by introducing the space of "ends" of a non-compact space. In spite of its early ap pearance, proper category theory was not recognized as a distinct area of topology until the late 1960's with the work of Siebenmann [OFB], [IS], [DES] on non-compact manifolds.
The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The book is reasonably self-contained. Profinite groups are Galois groups. As such they are of interest in algebraic number theory. Much of recent research on abstract infinite groups is related to profinite groups because residually finite groups are naturally embedded in a profinite group. In addition to basic facts about general profinite groups, the book emphasizes free constructions (particularly free profinite groups and the structure of their subgroups). Homology and cohomology is described with a minimum of prerequisites. This second edition contains three new appendices dealing with a new characterization of free profinite groups, presentations of pro-p groups and a new conceptually simpler approach to the proof of some classical subgroup theorems. Throughout the text there are additions in the form of new results, improved proofs, typographical corrections, and an enlarged bibliography. The list of open questions has been updated; comments and references have been added about those previously open problems that have been solved after the first edition appeared.
In the preface to Volume One I promised a second volume which would contain the theory of linear mappings and special classes of spaces im portant in analysis. It took me nearly twenty years to fulfill this promise, at least to some extent. To the six chapters of Volume One I added two new chapters, one on linear mappings and duality (Chapter Seven), the second on spaces of linear mappings (Chapter Eight). A glance at the Contents and the short introductions to the two new chapters will give a fair impression of the material included in this volume. I regret that I had to give up my intention to write a third chapter on nuclear spaces. It seemed impossible to include the recent deep results in this field without creating a great further delay. A substantial part of this book grew out of lectures I held at the Mathematics Department of the University of Maryland. during the academic years 1963-1964, 1967-1968, and 1971-1972. I would like to express my gratitude to my colleagues J. BRACE, S. GOLDBERG, J. HORVATH, and G. MALTESE for many stimulating and helpful discussions during these years. I am particularly indebted to H. JARCHOW (Ziirich) and D. KEIM (Frankfurt) for many suggestions and corrections. Both have read the whole manuscript. N. ADASCH (Frankfurt), V. EBERHARDT (Miinchen), H. MEISE (Diisseldorf), and R. HOLLSTEIN (Paderborn) helped with important observations."
These notes are an expanded and updated version of a course of lectures which I gave at King's College London during the summer term 1979. The main topic is the Hermitian classgroup of orders, and in particular of group rings. Most of this work is published here for the first time. The primary motivation came from the connection with the Galois module structure of rings of algebraic integers. The principal aim was to lay the theoretical basis for attacking what may be called the "converse problem" of Galois module structure theory: to express the symplectic local and global root numbers and conductors as algebraic invariants. A previous edition of these notes was circulated privately among a few collaborators. Based on this, and following a partial solution of the problem by the author, Ph. Cassou-Nogues and M. Taylor succeeded in obtaining a complete solution. In a different direction J. Ritter published a paper, answering certain character theoretic questions raised in the earlier version. I myself disapprove of "secret circulation," but the pressure of other work led to a delay in publication; I hope this volume will make amends. One advantage of the delay is that the relevant recent work can be included. In a sense this is a companion volume to my recent Springer-Ergebnisse-Bericht, where the Hermitian theory was not dealt with. Our approach is via "Hom-groups," analogous to that followed in recent work on locally free classgroups.
This volume contains a selection of papers by the participants of the 6. International Conference on Probability in Banach Spaces, Sand bjerg, Denmark, June 16-D1, 1986. The conference was attended by 45 participants from several countries. One thing makes this conference completely different from the previous five ones, namely that it was ar ranged jointly in Probability in Banach spaces and Banach space theory with almost equal representation of scientists in the two fields. Though these fields are closely related it seems that direct collaboration between researchers in the two groups has been seldom. It is our feeling that the conference, where the participants were together for five days taking part in lectures and intense discussions of mutual problems, has contributed to a better understanding and closer collaboration in the two fields. The papers in the present volume do not cover all the material pre sented in the lectures; several results covered have been published else where. The sponsors of the conference are: The Carlsberg Foundation, The Danish Natural Science Research Council, The Danish Department of Education, The Department of Mathematics, Odense University, The Department of Mathematics, Aarhus University, The Knudsen Foundation, Odense, Odense University, The Research Foundation of Aarhus University, The Thborg Foundation. The participants and the organizers would like to thank these institu tions for their support. The Organizers. Contents A. de Acosta and M. Ledoux, On the identification of the limits in the law of the iterated logarithm in Banach spaces. . . . ."
This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles. Graeme Segal takes the Kortewegde Vries and nonlinear Schroedinger equations as central examples, and explores the mathematical structures underlying the inverse scattering transform. He explains the roles of loop groups, the Grassmannian, and algebraic curves. In the final part of the book, Richard Ward explores the connection between integrability and the self-dual Yang-Mills equations, and describes the correspondence between solutions to integrable equations and holomorphic vector bundles over twistor space.
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
The Seminar has taken place at Rutgers University in New Brunswick, New Jersey, since 1990 and it has become a tradition, starting in 1992, that the Seminar be held during July at IHES in Bures-sur-Yvette, France. This is the second Gelfand Seminar volume published by Birkhauser, the first having covered the years 1990-1992. Most of the papers in this volume result from Seminar talks at Rutgers, and some from talks at IHES. In the case of a few of the papers the authors did not attend, but the papers are in the spirit of the Seminar. This is true in particular of V. Arnold's paper. He has been connected with the Seminar for so many years that his paper is very natural in this volume, and we are happy to have it included here. We hope that many people will find something of interest to them in the special diversity of topics and the uniqueness of spirit represented here. The publication of this volume would be impossible without the devoted attention of Ann Kostant. We are extremely grateful to her. I. Gelfand J. Lepowsky M. Smirnov Questions and Answers About Geometric Evolution Processes and Crystal Growth Fred Almgren We discuss evolutions of solids driven by boundary curvatures and crystal growth with Gibbs-Thomson curvature effects. Geometric measure theo retic techniques apply both to smooth elliptic surface energies and to non differentiable crystalline surface energies."
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
This volume contains research papers and survey articles written by Beno Eckmann from 1941 to 1986. The aim of the compilation is to provide a general view of the breadth of Eckmann s mathematical work. His influence was particularly strong in the development of many subfields of topology and algebra, where he repeatedly pointed out close, and often surprising, connections between them and other areas. The surveys are exemplary in terms of how they make difficult mathematical ideas easily comprehensible and accessible even to non-specialists. The topics treated here can be classified into the following, not entirely unrelated areas: algebraic topology (homotopy and homology theory), algebra, group theory and differential geometry. Beno Eckmann was Professor of Mathematics at the University of Lausanne, 1942-48, and Principal of the Institute for Mathematical Research at the ETH Zurich, 1964-84, where he was therefore an emeritus professor."
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of the IMA Markus Keel, Deputy Director of the IMA v PREFACE DEDICATED TO MAX KELLY, JUNE 5 1930 TO JANUARY 26 2007. This is not a proceedings of the 2004 conference "n-Categories: Fo- dations and Applications" that we organized and ran at the IMA during the two weeks June 7-18, 2004! We thank all the participants for helping make that a vibrant and inspiring occasion. We also thank the IMA sta? for a magni?cent job. There has been a great deal of work in higher c- egory theory since then, but we still feel that it is not yet time to o?er a volume devoted to the main topic of the conference.
A complete overview of the fundamentals of three-dimensional descriptive geometry From an overview of the history of descriptive geometry to the application of the principles of descriptive geometry to real-world scenarios, Fundamentals of Three-Dimensional Descriptive Geometry provides a comprehensive look at the topic. Used throughout the disciplines of science, engineering, and architecture, descriptive geometry is crucial for everything from understanding the various segments and inter-workings of structural systems to grasping the relationship of molecules in a chemical compound. For those requiring a full accounting of the fundamentals of three-dimensional descriptive geometry, this text is a definitive and comprehensive resource.
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.
In the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized.
'Et moi, ..., si j'avait su comment en revenir, One service methematics has rendered the je n'y serais point aile.' human race. It has put common sense back JulesVerne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be seese'. able to do something with it. Eric T. Bell O.Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such state ments as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguable true. And all statements obtainable this .way form part of the raison d'etre of this series."
This volume contains reviewed papers from the 1997 IUTAM Symposium, presenting the latest results from leading scientists within the field of detection and simulation of organized flow structures. It describes various aspects of complex, organized flow motion, including topics from decomposition techniques to topological concepts.
The first international conference on Probability in Banach Spaces was held at Oberwolfach, West Germany, in 1975. It brought together European researchers who, under the inspiration of the Schwartz Seminar in Paris, were using probabi listic methods in the study of the geometry of Banach spaces, a rather small number of probabilists who were already studying classical limit laws on Banach spaces, and a larger number of probabilists, specialists in various aspects of the study of Gaussian processes, whose results and techniques were of interest to the members of the first two groups. This first conference was very fruitful. It fos tered a continuing relationship among 50 to 75 probabilists and analysts working on probability on infinite-dimensional spaces, the geometry of Banach spaces, and the use of random methods in harmonic analysis. Six more international conferences were held since the 1975 meeting. Two of the meetings were held at Tufts University, one at Scentsnderborg, Denmark, and the others at Oberwolfach. This volume contains a selection of papers by the partici pants of the Seventh International Conference held at Oberwolfach, West Ger many, June 26-July 2, 1988. This exciting and provocative conference was at tended by more than 50 mathematicians from many countries. These papers demonstrate the range of interests of the conference participants. In addition to the ongoing study of classical and modern limit theorems in Banach spaces, a branching out has occurred among the members of this group."
This book is an outgrowth of the Workshop on "Regulators in Analysis, Geom etry and Number Theory" held at the Edmund Landau Center for Research in Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During the preparation and the holding of the workshop we were greatly helped by the director of the Landau Center: Lior Tsafriri during the time of the planning of the conference, and Hershel Farkas during the meeting itself. Organizing and running this workshop was a true pleasure, thanks to the expert technical help provided by the Landau Center in general, and by its secretary Simcha Kojman in particular. We would like to express our hearty thanks to all of them. However, the articles assembled in the present volume do not represent the proceedings of this workshop; neither could all contributors to the book make it to the meeting, nor do the contributions herein necessarily reflect talks given in Jerusalem. In the introduction, we outline our view of the theory to which this volume intends to contribute. The crucial objective of the present volume is to bring together concepts, methods, and results from analysis, differential as well as algebraic geometry, and number theory in order to work towards a deeper and more comprehensive understanding of regulators and secondary invariants. Our thanks go to all the participants of the workshop and authors of this volume. May the readers of this book enjoy and profit from the combination of mathematical ideas here documented."
Topology occupies a central position in modern mathematics, and the concept of the fibre bundle provides an appropriate framework for studying differential geometry. Fibrewise homotopy theory is a very large subject that has attracted a good deal of research in recent years. This book provides an overview of the subject as it stands at present.
Historically, applications of algebraic topology to the study of topological transformation groups were originated in the work of L. E. 1. Brouwer on periodic transformations and, a little later, in the beautiful fixed point theorem ofP. A. Smith for prime periodic maps on homology spheres. Upon comparing the fixed point theorem of Smith with its predecessors, the fixed point theorems of Brouwer and Lefschetz, one finds that it is possible, at least for the case of homology spheres, to upgrade the conclusion of mere existence (or non-existence) to the actual determination of the homology type of the fixed point set, if the map is assumed to be prime periodic. The pioneer result of P. A. Smith clearly suggests a fruitful general direction of studying topological transformation groups in the framework of algebraic topology. Naturally, the immediate problems following the Smith fixed point theorem are to generalize it both in the direction of replacing the homology spheres by spaces of more general topological types and in the direction of replacing the group tl by more general compact groups.
Compactness is related to a number of fundamental concepts of mathemat ics. Particularly important are compact Hausdorff spaces or compacta. Com pactness appeared in mathematics for the first time as one of the main topo logical properties of an interval, a square, a sphere and any closed, bounded subset of a finite dimensional Euclidean space. Once it was realized that pre cisely this property was responsible for a series of fundamental facts related to those sets such as boundedness and uniform continuity of continuous func tions defined on them, compactness was given an abstract definition in the language of general topology reaching far beyond the class of metric spaces. This immensely extended the realm of application of this concept (including in particular, function spaces of quite general nature). The fact, that general topology provided an adequate language for a description of the concept of compactness and secured a natural medium for its harmonious development is a major credit to this area of mathematics. The final formulation of a general definition of compactness and the creation of the foundations of the theory of compact topological spaces are due to P.S. Aleksandrov and Urysohn (see Aleksandrov and Urysohn (1971))."
Since its very existence as a separate field within computer science, computer graphics had to make extensive use of non-trivial mathematics, for example, projective geometry, solid modelling, and approximation theory. This interplay of mathematics and computer science is exciting, but also makes it difficult for students and researchers to assimilate or maintain a view of the necessary mathematics. The possibilities offered by an interdisciplinary approach are still not fully utilized. This book gives a selection of contributions to a workshop held near Genoa, Italy, in October 1991, where a group of mathematicians and computer scientists gathered to explore ways of extending the cooperation between mathematics and computer graphics.
Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory." The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes."
This is the first monograph to exclusively treat Kac-Moody (K-M) groups, a standard tool in mathematics and mathematical physics. K-M Lie algebras were introduced in the mid-sixties independently by V. Kac and R. Moody, generalizing finite-dimensional semisimple Lie algebras. K-M theory has since undergone tremendous developments in various directions and has profound connections with a number of diverse areas, including number theory, combinatorics, topology, singularities, quantum groups, completely integrable systems, and mathematical physics. This comprehensive, well-written text moves from K-M Lie algebras to the broader K-M Lie group setting, and focuses on the study of K-M groups and their flag varieties. In developing K-M theory from scratch, the author systematically leads readers to the forefront of the subject, treating the algebro-geometric, topological, and representation-theoretic aspects of the theory. Most of the material presented here is not available anywhere in the book literature.{\it Kac--Moody Groups, their Flag Varieties and Representation Theory} is suitable for an advanced graduate course in representation theory, and contains a number of examples, exercises, challenging open problems, comprehensive bibliography, and index. Research mathematicians at the crossroads of representation theory, geometry, and topology will learn a great deal from this text; although the book is devoted to the general K-M case, those primarily interested in the finite-dimensional case will also benefit. No prior knowledge of K-M Lie algebras or of (finite-dimensional) algebraic groups is required, but some basic knowledge would certainly be helpful. For the reader's convenience some of the basic results needed from other areas, including ind-varieties, pro-algebraic groups and pro-Lie algebras, Tits systems, local cohomology, equivariant cohomology, and homological algebra are included. |
You may like...
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R6,648
Discovery Miles 66 480
Game Theory for Networking Applications
Ju Bin Song, Husheng Li, …
Hardcover
R1,422
Discovery Miles 14 220
Handbook of Manufacturing Industries in…
John R. Bryson, Jennifer Clark, …
Paperback
R1,569
Discovery Miles 15 690
New all-in-one: Geoff giant and Gilly…
Mart Meij, Beatrix de Villiers
Paperback
R94
Discovery Miles 940
|