![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology
This is the second revised and extendededition of the successful book on the algebraic structure of the Stone-Cech compactification of a discrete semigroup and its combinatorial applications, primarily in the field known as Ramsey Theory. There has been very active research in the subject dealt with by the book in the 12 years which is now included in this edition. This book is a self-contained exposition of the theory of compact right semigroupsfor discrete semigroups and the algebraic properties of these objects. The methods applied in the book constitute a mosaic of infinite combinatorics, algebra, and topology. The reader will find numerous combinatorial applications of the theory, including the central sets theorem, partition regularity of matrices, multidimensional Ramsey theory, and many more.
Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.
An ultrafilter is a truth-value assignment to the family of subsets of a set, and a method of convergence to infinity. From the first (logical) property arises its connection with two-valued logic and model theory; from the second (convergence) property arises its connection with topology and set theory. Both these descriptions of an ultrafilter are connected with compactness. The model-theoretic property finds its expression in the construction of the ultraproduct and the compactness type of theorem of Los (implying the compactness theorem of first-order logic); and the convergence property leads to the process of completion by the adjunction of an ideal element for every ultrafilter-i. e., to the Stone-Cech com pactification process (implying the Tychonoff theorem on the compact ness of products). Since these are two ways of describing the same mathematical object, it is reasonable to expect that a study of ultrafilters from these points of view will yield results and methods which can be fruitfully crossbred. This unifying aspect is indeed what we have attempted to emphasize in the present work."
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
Central to this collection of papers are new developments in the general theory of localization of spaces. This field has undergone tremendous change of late and is yielding new insight into the mysteries of classical homotopy theory. The present volume comprises the refereed articles submitted at the Conference on Algebraic Topology held in Sant Feliu de Guixols, Spain, in June 1994. Several comprehensive articles on general localization clarify the basic tools and give a report on the state of the art in the subject matter. The text is therefore accessible not only to the professional mathematician but also to the advanced student.
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in nonlin ear analysis during the last three decades. It is intended, at least partly, as a continuation of Topological Nonlinear Analysis: Degree, Singularity and Varia tions, published in 1995. The survey articles presented are concerned with three main streams of research, that is topological degree, singularity theory and variational methods, They reflect the personal taste of the authors, all of them well known and distinguished specialists. A common feature of these articles is to start with a historical introduction and conclude with recent results, giving a dynamic picture of the state of the art on these topics. Let us mention the fact that most of the materials in this book were pre sented by the authors at the "Second Topological Analysis Workshop on Degree, Singularity and Variations: Developments of the Last 25 Years," held in June 1995 at Villa Tuscolana, Frascati, near Rome. Michele Matzeu Alfonso Vignoli Editors Topological Nonlinear Analysis II Degree, Singularity and Variations Classical Solutions for a Perturbed N-Body System Gianfausto Dell 'A ntonio O. Introduction In this review I shall consider the perturbed N-body system, i.e., a system composed of N point bodies of masses ml, ... mN, described in cartesian co ordinates by the system of equations (0.1) where f) V'k, m == - l--' m = 1, 2, 3."
'Et moi .... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non. The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re sults."
These lecture notes are intended as an introduction to the methods of classi?cation of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = P . According to Serre (GAGA) the class- n cation of holomorphic vector bundles is equivalent to the classi?cation of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these ?elds are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classi?cation of holomorphic vector bundles over P . This lecture then served as the basis for a course of lectures n in G]ottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the - troductory nature of this book we have had to leave out some di?cult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of pa- graphs. Each section is preceded by a short description of its contents."
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
The theory of geometric structures on manifolds which are locally modeled on a homogeneous space of a Lie group traces back to Charles Ehresmann in the 1930s, although many examples had been studied previously. Such locally homogeneous geometric structures are special cases of Cartan connections where the associated curvature vanishes. This theory received a big boost in the 1970s when W. Thurston put his geometrization program for 3-manifolds in this context. The subject of this book is more ambitious in scope. Unlike Thurston's eight 3-dimensional geometries, it covers structures which are not metric structures, such as affine and projective structures. This book describes the known examples in dimensions one, two and three. Each geometry has its own special features, which provide special tools in its study. Emphasis is given to the inter-relationships between different geometries and how one kind of geometric structure induces structures modeled on a different geometry. Up to now, much of the literature has been somewhat inaccessible and the book collects many of the pieces into one unified work. This book focuses on several successful classification problems. Namely, fix a geometry in the sense of Klein and a topological manifold. Then the different ways of locally putting the geometry on the manifold lead to a ""moduli space"". Often the moduli space carries a rich geometry of its own reflecting the model geometry. The book is self-contained and accessible to students who have taken first-year graduate courses in topology, smooth manifolds, differential geometry and Lie groups.
Recent progress in research, teaching and communication has arisen
from the use of new tools in visualization. To be fruitful,
visualization needs precision and beauty. This book is a source of
mathematical illustrations by mathematicians as well as artists. It
offers examples in many basic mathematical fields including
polyhedra theory, group theory, solving polynomial equations,
dynamical systems and differential topology.
The content of this monograph is situated in the intersection of important branches of mathematics like the theory of one complex variable, algebraic geometry, low dimensional topology and, from the point of view of the techniques used, com- natorial group theory. The main tool comes from the Uniformization Theorem for Riemannsurfaces, whichrelatesthetopologyofRiemannsurfacesandholomorphic or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean crystallographic groups. Foundations of this relationship were established by A. M. Macbeath in the early sixties and dev- oped later by, among others, D. Singerman. Another important result in Riemann surface theory is the connection between Riemannsurfacesandtheir symmetrieswith complexalgebraiccurvesandtheirreal forms. Namely, there is a well known functorial bijective correspondence between compact Riemann surfaces and smooth, irreducible complex projective curves. The fact that a Riemann surface has a symmetry means, under this equivalence, that the corresponding complex algebraic curve has a real form, that is, it is the complex- cation of a real algebraic curve. Moreover, symmetries which are non-conjugate in the full group of automorphisms of the Riemann surface, correspond to real forms which are birationally non-isomorphic over the reals. Furthermore, the set of points xedbyasymmetryishomeomorphictoaprojectivesmoothmodeloftherealform
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books GH] and EW. The title tions. So this book (, Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible."
Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." Bulletin of the L.M.S.
The central theme of this book is the restoration of Poincare duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. Highlights include complete and detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures."
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist."
Author is well-known and established book author (all Serge Lang books are now published by Springer); Presents a brief introduction to the subject; All manifolds are assumed finite dimensional in order not to frighten some readers; Complete proofs are given; Use of manifolds cuts across disciplines and includes physics, engineering and economics
This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer sity year). The course was taught during the first semester of the 1979-80 academic year (three hours a week of lecture, four hours a week of guided work). Topology is the study of the notions of limit and continuity and thus is, in principle, very ancient. However, we shall limit ourselves to the origins of the theory since the nineteenth century. One of the sources of topology is the effort to clarify the theory of real-valued functions of a real variable: uniform continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass theorem (this work is historically inseparable from the attempts to define with precision what the real numbers are). Cauchy was one of the pioneers in this direction, but the errors that slip into his work prove how hard it was to isolate the right concepts. Cantor came along a bit later; his researches into trigonometric series led him to study in detail sets of points of R (whence the concepts of open set and closed set in R, which in his work are intermingled with much subtler concepts). The foregoing alone does not justify the very general framework in which this course is set. The fact is that the concepts mentioned above have shown themselves to be useful for objects other than the real numbers."
From the 28th of February through the 3rd of March, 2001, the Department of Math ematics of the University of Florida hosted a conference on the many aspects of the field of Ordered Algebraic Structures. Officially, the title was "Conference on Lattice Ordered Groups and I-Rings," but its subject matter evolved beyond the limitations one might associate with such a label. This volume is officially the proceedings of that conference, although, likewise, it is more accurate to view it as a complement to that event. The conference was the fourth in wh at has turned into aseries of similar conferences, on Ordered Algebraic Structures, held in consecutive years. The first, held at the University of Florida in Spring, 1998, was a modest and informal affair. The fifth is in the final planning stages at this writing, for March 7-9, 2002, at Vanderbilt University. And although these events remain modest and reasonably informal, their scope has broadened, as they have succeeded in attracting mathematicians from other, related fields, as weIl as from more distant lands."
The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. Dynamical issues arise in equations which attempt to model phenomena that change with time, and the infinite dimensional aspects occur when forces that describe the motion depend on spatial variables. This book may serve as an entree for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations. It begins with a brief essay on the evolution of evolutionary equations and introduces the origins of the basic elements of dynamical systems, flow and semiflow.
This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.
The theme of the first Abel Symposium was operator algebras in a wide sense. In the last 40 years operator algebras have developed from a rather special discipline within functional analysis to become a central field in mathematics often described as "non-commutative geometry." It has branched out in several sub-disciplines and made contact with other subjects. The contributions to this volume give a state-of-the-art account of some of these sub-disciplines and the variety of topics reflect to some extent how the subject has developed. This is the first volume in a prestigious new book series linked to the Abel prize.
The theory of foliations of manifolds was created in the forties of the last century by Ch. Ehresmann and G. Reeb [ER44]. Since then, the subject has enjoyed a rapid development and thousands of papers investigating foliations have appeared. A list of papers and preprints on foliations up to 1995 can be found in Tondeur [Ton97]. Due to the great interest of topologists and geometers in this rapidly ev- ving theory, many books on foliations have also been published one after the other. We mention, for example, the books written by: I. Tamura [Tam76], G. Hector and U. Hirsch [HH83], B. Reinhart [Rei83], C. Camacho and A.L. Neto [CN85], H. Kitahara [Kit86], P. Molino [Mol88], Ph. Tondeur [Ton88], [Ton97], V. Rovenskii [Rov98], A. Candel and L. Conlon [CC03]. Also, the survey written by H.B. Lawson, Jr. [Law74] had a great impact on the de- lopment of the theory of foliations. So it is natural to ask: why write yet another book on foliations? The answerisverysimple.Ourareasofinterestandinvestigationaredi?erent.The main theme of this book is to investigate the interrelations between foliations of a manifold on one hand, and the many geometric structures that the ma- foldmayadmitontheotherhand. Amongthesestructureswemention:a?ne, Riemannian, semi-Riemannian, Finsler, symplectic, and contact structures. |
You may like...
Emergency Department Operations and…
Joshua Joseph, Benjamin White
Hardcover
R2,132
Discovery Miles 21 320
Severe Sepsis Care in the Emergency…
John C Perkins Jr, Michael E. Winters
Hardcover
Prehospital Emergency Medicine Secrets
Robert Olympia, Jeffrey S Lubin
Paperback
R1,013
Discovery Miles 10 130
Pharmacological Basis of Acute Care
Yoo Kuen Chan, Kwee Peng Ng, …
Hardcover
R3,744
Discovery Miles 37 440
FRCEM Final OSCE: 125 OSCE Stations…
Kiran Somani, James Miers
Paperback
R1,540
Discovery Miles 15 400
Cancer Emergencies, Part II, An Issue of…
David M. Spiro, Mohamud Daya
Hardcover
R1,659
Discovery Miles 16 590
Pediatric Emergency Medicine, An Issue…
Mimi Lu, Dale P Woolridge, …
Hardcover
R1,697
Discovery Miles 16 970
|