![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
Recent progress in research, teaching and communication has arisen
from the use of new tools in visualization. To be fruitful,
visualization needs precision and beauty. This book is a source of
mathematical illustrations by mathematicians as well as artists. It
offers examples in many basic mathematical fields including
polyhedra theory, group theory, solving polynomial equations,
dynamical systems and differential topology.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a new product for orbifolds and has had significant impact in recent years. The final chapter includes explicit computations for a number of interesting examples.
The content of this monograph is situated in the intersection of important branches of mathematics like the theory of one complex variable, algebraic geometry, low dimensional topology and, from the point of view of the techniques used, com- natorial group theory. The main tool comes from the Uniformization Theorem for Riemannsurfaces, whichrelatesthetopologyofRiemannsurfacesandholomorphic or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean crystallographic groups. Foundations of this relationship were established by A. M. Macbeath in the early sixties and dev- oped later by, among others, D. Singerman. Another important result in Riemann surface theory is the connection between Riemannsurfacesandtheir symmetrieswith complexalgebraiccurvesandtheirreal forms. Namely, there is a well known functorial bijective correspondence between compact Riemann surfaces and smooth, irreducible complex projective curves. The fact that a Riemann surface has a symmetry means, under this equivalence, that the corresponding complex algebraic curve has a real form, that is, it is the complex- cation of a real algebraic curve. Moreover, symmetries which are non-conjugate in the full group of automorphisms of the Riemann surface, correspond to real forms which are birationally non-isomorphic over the reals. Furthermore, the set of points xedbyasymmetryishomeomorphictoaprojectivesmoothmodeloftherealform
Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.
Intersection cohomology assigns groups which satisfy a generalized form of Poincare duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincare duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
Many, perhaps most textbooks of quantum mechanics present a Copenhagen, single system angle; fewer present the subject matter as an instrument for treating ensembles, but the two methods have been silently coexisting since the mid-Thirties. This lingering dichotomy of purpose for a major physical discipline has much shrouded further insights into the foundations of quantum theory. Quantum Reprogramming resolves this long-standing dichotomy by examining the mutual relation between single systems and ensembles, assigning each its own tools for treating the subject at hand: i.e., Schrodinger-Dirac methods for ensembles versus period integrals for single systems. A unified treatment of integer and fractional quantum Hall effects and a finite description of the electron's anomalies are mentioned as measures of justification for the chosen procedure of resolving an old-time dichotomy. The methods of presentation are, in part, elementary, with repetitive references needed to delineate differences with respect to standard methods. The parts on period integrals are developed with a perspective on elementary methods in physics, thus leading up to some standard results of de Rham theory and algebraic topology. Audience: Students of physics, mathematics, philosophers as well as outsiders with a general interest in the conceptual development of physics will find useful reading in these pages, which will stimulate further inquiry and study. "
The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. Dynamical issues arise in equations which attempt to model phenomena that change with time, and the infinite dimensional aspects occur when forces that describe the motion depend on spatial variables. This book may serve as an entree for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations. It begins with a brief essay on the evolution of evolutionary equations and introduces the origins of the basic elements of dynamical systems, flow and semiflow.
A. Banyaga: On the group of diffeomorphisms preserving an exact symplectic.- G.A. Fredricks: Some remarks on Cauchy-Riemann structures.- A. Haefliger: Differentiable Cohomology.- J.N. Mather: On the homology of Haefliger 's classifying space.- P. Michor: Manifolds of differentiable maps.- V. Poenaru: Some remarks on low-dimensional topology and immersion theory.- F. Sergeraert: La classe de cobordisme des feuilletages de Reeb de S est nulle.- G. Wallet: Invariant de Godbillon-Vey et diff omorphismes commutants.
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous K hler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische R ume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement sym triques.- S. Murakami: Plongements holomorphes de domaines sym triques.- E.M. Stein: The analogues of Fatous 's theorem and estimates for maximal functions.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein's Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane's work in the early 1940's and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books GH] and EW. The title tions. So this book (, Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible."
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
toComplexRe ectionGroups and Their Braid Groups 123 Michel Broue Universite Paris Diderot Paris 7 UFR de Mathematiques 175 Rue du Chevaleret 75013 Paris France broue@math. jussieu. fr ISBN: 978-3-642-11174-7 e-ISBN: 978-3-642-11175-4 DOI: 10. 1007/978-3-642-11175-4 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2009943837 Mathematics Subject Classi cation (2000): 20, 13, 16, 55 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro lm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of aspeci c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover illustration: c Anouk Grinberg Cover design: SPi Publisher Services Printed on acid-free paper springer. com Preface Weyl groups are ?nite groups acting as re?ection groups on rational vector spaces. It iswellknownthat theserationalre?ectiongroupsappearas"ske- tons" of many important mathematical objects: algebraic groups, Hecke algebras, Artin-Tits braid groups, etc."
The language of -categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an -category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of -categories from first principles in a model-independent fashion using the axiomatic framework of an -cosmos, the universe in which -categories live as objects. An -cosmos is a fertile setting for the formal category theory of -categories, and in this way the foundational proofs in -category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained--no background in complex numbers is assumed--and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston 's hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz's global bifurcation theorem. Stability of the branches is also studied.The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. After more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text.
Helmholtz's seminal paper on vortex motion (1858) marks the beginning of what is now called topological fluid mechanics.After 150 years of work, the field has grown considerably. In the last several decades unexpected developments have given topological fluid mechanics new impetus, benefiting from the impressive progress in knot theory and geometric topology on the one hand, and in mathematical and computational fluid dynamics on the other. This volume contains a wide-ranging collection of up-to-date, valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics, including topological vortex dynamics and magnetohydrodynamics, integrability issues, Hamiltonian structures and singularity formation, to DNA tangles and knotted DNAs in sedimentation. A substantial introductory chapter on knots and links, covering elements of modern braid theory and knot polynomials, as well as more advanced topics in knot classification, provides an invaluable addition to this material.
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
'The book is well written, and there is a welcome breadth in the choice of topics. I think this book is a valuable resource. Students who meticulously work through all the problems in the book in an intelligent way, will surely gain considerable insight into the subject; teachers who donaEURO (TM)t tell their students about it will find it a valuable source for exam questions.'The Mathematical GazetteThe book offers a good introduction to topology through solved exercises. It is mainly intended for undergraduate students. Most exercises are given with detailed solutions.In the second edition, some significant changes have been made, other than the additional exercises. There are also additional proofs (as exercises) of many results in the old section 'What You Need To Know', which has been improved and renamed in the new edition as 'Essential Background'. Indeed, it has been considerably beefed up as it now includes more remarks and results for readers' convenience. The interesting sections 'True or False' and 'Tests' have remained as they were, apart from a very few changes.
This book is based on notes for a master's course given at Queen Mary, University of London, in the 1998/9 session. Such courses in London are quite short, and the course consisted essentially of the material in the ?rst three chapters, together with a two-hour lecture on connections with group theory. Chapter 5 is a considerably expanded version of this. For the course, the main sources were the books by Hopcroft and Ullman ( 20]), by Cohen ( 4]), and by Epstein et al. ( 7]). Some use was also made of a later book by Hopcroft and Ullman ( 21]). The ulterior motive in the ?rst three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Three such notions are considered. These are: generated by a type 0 grammar, recognised by a Turing machine (deterministic or not) and de?ned by means of a Godel ] numbering, having de?ned "recursively enumerable" for sets of natural numbers. It is hoped that this has been achieved without too many ar- ments using complicated notation. This is a problem with the entire subject, and it is important to understand the idea of the proof, which is often quite simple. Two particular places that are heavy going are the proof at the end of Chapter 1 that a language recognised by a Turing machine is type 0, and the proof in Chapter 2 that a Turing machine computable function is partial recursive."
Der vorliegende Klassiker bietet Studierenden und Forschenden in den Gebieten der Theoretischen und Mathematischen Physik eine ideale Einfuhrung in die Differentialgeometrie und Topologie. Beides sind wichtige Werkzeuge in den Gebieten der Astrophysik, der Teilchen- und Festkoerperphysik. Das Buch fuhrt durch: - Pfadintegralmethode und Eichtheorie - Mathematische Grundlagen von Abbildungen, Vektorraumen und Topologie - Fortgeschrittene Konzepte der Geometrie und Topologie und deren Anwendungen im Bereich der Flussigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie - Eine Zusammenfuhrung von Geometrie und Topologie: Faserbundel, charakteristische Klassen und Indextheoreme - Anwendungen von Geometrie und Topologie in der modernen Physik: Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer geometrischen Perspektive |
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
|