![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
During the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
The Pontryagin-van Kampen duality theorem and the Bochner theorem on positive-definite functions are known to be true for certain abelian topological groups that are not locally compact. The book sets out to present in a systematic way the existing material. It is based on the original notion of a nuclear group, which includes LCA groups and nuclear locally convex spaces together with their additive subgroups, quotient groups and products. For (metrizable, complete) nuclear groups one obtains analogues of the Pontryagin duality theorem, of the Bochner theorem and of the L vy-Steinitz theorem on rearrangement of series (an answer to an old question of S. Ulam). The book is written in the language of functional analysis. The methods used are taken mainly from geometry of numbers, geometry of Banach spaces and topological algebra. The reader is expected only to know the basics of functional analysis and abstract harmonic analysis.
A central problem in algebraic topology is the calculation of the values of the stable homotopy groups of spheres +*S. In this book, a new method for this is developed based upon the analysis of the Atiyah-Hirzebruch spectral sequence. After the tools for this analysis are developed, these methods are applied to compute inductively the first 64 stable stems, a substantial improvement over the previously known 45. Much of this computation is algorithmic and is done by computer. As an application, an element of degree 62 of Kervaire invariant one is shown to have order two. This book will be useful to algebraic topologists and graduate students with a knowledge of basic homotopy theory and Brown-Peterson homology; for its methods, as a reference on the structure of the first 64 stable stems and for the tables depicting the behavior of the Atiyah-Hirzebruch and classical Adams spectral sequences through degree 64.
This is the first of two volumes which will provide an introduction to modern developments in the representation theory of finite groups and associative algebras. The subject is viewed from the perspective of homological algebra and the theory of representations of finite dimensional algebras; the author emphasises modular representations and the homological algebra associated with their categories. This volume is self-contained and independent of its successor, being primarily concerned with the exposition of the necessary background material. The heart of the book is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost split sequences are discussed in detail. Much of the material presented here has never appeared in book form. Consequently students and research workers studying group theory and indeed algebra in general will be grateful to Dr Benson for supplying an exposition of a good deal of the essential results of modern representation theory.
The book is devoted to two natural problems, the existence and unicity of minimal projections in Banach space. Connections are established between the latter and unicity in mathematical programming problems and also with the problem of the characterization of Hilbert spaces. The book also contains a Kolmogorov type criterion for minimal projections and detailed descriptions of the Fourier operators. Presenting both new results and problems for further investigations, this book is addressed to researchers and graduate students interested in geometric functional analysis and to applications.
This book provides the first extensive and systematic treatment of the theory of commutative coherent rings. It blends, and provides a link, between the two sometimes disjoint approaches available in the literature, the ring theoretic approach, and the homological algebra approach. The book covers most results in commutative coherent ring theory known to date, as well as a number of results never published before. Starting with elementary results, the book advances to topics such as: uniform coherence, regular rings, rings of small homological dimensions, polynomial and power series rings, group rings and symmetric algebra over coherent rings. The subject of coherence is brought to the frontiers of research, exposing the open problems in the field. Most topics are treated in their fully generality, deriving the results on coherent rings as conclusions of the general theory. Thus, the book develops many of the tools of modern research in commutative algebra with a variety of examples and counterexamples. Although the book is essentially self-contained, basic knowledge of commutative and homological algebra is recommended. It addresses graduate students and researchers.
The Motivation. With intensified use of mathematical ideas, the methods and techniques of the various sciences and those for the solution of practical problems demand of the mathematician not only greater readi ness for extra-mathematical applications but also more comprehensive orientations within mathematics. In applications, it is frequently less important to draw the most far-reaching conclusions from a single mathe matical idea than to cover a subject or problem area tentatively by a proper "variety" of mathematical theories. To do this the mathematician must be familiar with the shared as weIl as specific features of differ ent mathematical approaches, and must have experience with their inter connections. The Atiyah-Singer Index Formula, "one of the deepest and hardest results in mathematics," "probably has wider ramifications in topology and analysis than any other single result" (F. Hirzebruch) and offers perhaps a particularly fitting example for such an introduction to "Mathematics" In spi te of i ts difficulty and immensely rich interrela tions, the realm of the Index Formula can be delimited, and thus its ideas and methods can be made accessible to students in their middle * semesters. In fact, the Atiyah-Singer Index Formula has become progressively "easier" and "more transparent" over the years. The discovery of deeper and more comprehensive applications (see Chapter 111. 4) brought with it, not only a vigorous exploration of its methods particularly in the many facetted and always new presentations of the material by M. F."
These are proceedings of an International Conference on Algebraic Topology, held 28 July through 1 August, 1986, at Arcata, California. The conference served in part to mark the 25th anniversary of the journal "Topology" and 60th birthday of Edgar H. Brown. It preceded ICM 86 in Berkeley, and was conceived as a successor to the Aarhus conferences of 1978 and 1982. Some thirty papers are included in this volume, mostly at a research level. Subjects include cyclic homology, H-spaces, transformation groups, real and rational homotopy theory, acyclic manifolds, the homotopy theory of classifying spaces, instantons and loop spaces, and complex bordism.
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
The book is the second part of an intended three-volume treatise on semialgebraic topology over an arbitrary real closed field R. In the first volume (LNM 1173) the category LSA(R) or regular paracompact locally semialgebraic spaces over R was studied. The category WSA(R) of weakly semialgebraic spaces over R - the focus of this new volume - contains LSA(R) as a full subcategory. The book provides ample evidence that WSA(R) is "the" right cadre to understand homotopy and homology of semialgebraic sets, while LSA(R) seems to be more natural and beautiful from a geometric angle. The semialgebraic sets appear in LSA(R) and WSA(R) as the full subcategory SA(R) of affine semialgebraic spaces. The theory is new although it borrows from algebraic topology. A highlight is the proof that every generalized topological (co)homology theory has a counterpart in WSA(R) with in some sense "the same," or even better, properties as the topological theory. Thus we may speak of ordinary (=singular) homology groups, orthogonal, unitary or symplectic K-groups, and various sorts of cobordism groups of a semialgebraic set over R. If R is not archimedean then it seems difficult to develop a satisfactory theory of these groups within the category of semialgebraic sets over R: with weakly semialgebraic spaces this becomes easy. It remains for us to interpret the elements of these groups in geometric terms: this is done here for ordinary (co)homology.
This selection of papers from the Beijing conference gives a cross-section of the current trends in the field of fixed point theory as seen by topologists and analysts. Apart from one survey article, they are all original research articles, on topics including equivariant theory, extensions of Nielsen theory, periodic orbits of discrete and continuous dynamical systems, and new invariants and techniques in topological approaches to analytic problems.
The contributions in this volume summarize parts of a seminar on conformal geometry which was held at the Max-Planck-Institut fur Mathematik in Bonn during the academic year 1985/86. The intention of this seminar was to study conformal structures on mani folds from various viewpoints. The motivation to publish seminar notes grew out of the fact that in spite of the basic importance of this field to many topics of current interest (low-dimensional topology, analysis on manifolds . . . ) there seems to be no coherent introduction to conformal geometry in the literature. We have tried to make the material presented in this book self-contained, so it should be accessible to students with some background in differential geometry. Moreover, we hope that it will be useful as a reference and as a source of inspiration for further research. Ravi Kulkarni/Ulrich Pinkall Conformal Structures and Mobius Structures Ravi S. Kulkarni* Contents 0 Introduction 2 1 Conformal Structures 4 2 Conformal Change of a Metric, Mobius Structures 8 3 Liouville's Theorem 12 n 4 The GroupsM(n) andM(E ) 13 5 Connection with Hyperbol ic Geometry 16 6 Constructions of Mobius Manifolds 21 7 Development and Holonomy 31 8 Ideal Boundary, Classification of Mobius Structures 35 * Partially supported by the Max-Planck-Institut fur Mathematik, Bonn, and an NSF grant. 2 O Introduction (0. 1) Historically, the stereographic projection and the Mercator projection must have appeared to mathematicians very startling."
This volume collects six related articles. The first is the notes (written by J.S. Milne) of a major part of the seminar "Periodes des Int grales Abeliennes" given by P. Deligne at I'.B.E.S., 1978-79. The second article was written for this volume (by P. Deligne and J.S. Milne) and is largely based on: N Saavedra Rivano, Categories tannakiennes, Lecture Notes in Math. 265, Springer, Heidelberg 1972. The third article is a slight expansion of part of: J.S. Milne and Kuang-yen Shih, Sh ura varieties: conjugates and the action of complex conjugation 154 pp. (Unpublished manuscript, October 1979). The fourth article is based on a letter from P. De1igne to R. Langlands, dated 10th April, 1979, and was revised and completed (by De1igne) in July, 1981. The fifth article is a slight revision of another section of the manuscript of Milne and Shih referred to above. The sixth article, by A. Ogus, dates from July, 1980.
The International Workshop CG '88 on "Computational Geometry" was held at the University of WA1/4rzburg, FRG, March 24-25, 1988. As the interest in the fascinating field of Computational Geometry and its Applications has grown very quickly in recent years the organizers felt the need to have a workshop, where a suitable number of invited participants could concentrate their efforts in this field to cover a broad spectrum of topics and to communicate in a stimulating atmosphere. This workshop was attended by some fifty invited scientists. The scientific program consisted of 22 contributions, of which 18 papers with one additional paper (M. Reichling) are contained in the present volume. The contributions covered important areas not only of fundamental aspects of Computational Geometry but a lot of interesting and most promising applications: Algorithmic Aspects of Geometry, Arrangements, Nearest-Neighbor-Problems and Abstract Voronoi-Diagrams, Data Structures for Geometric Objects, Geo-Relational Algebra, Geometric Modeling, Clustering and Visualizing Geometric Objects, Finite Element Methods, Triangulating in Parallel, Animation and Ray Tracing, Robotics: Motion Planning, Collision Avoidance, Visibility, Smooth Surfaces, Basic Models of Geometric Computations, Automatizing Geometric Proofs and Constructions.
This volume records the lectures given at a conference to celebrate Professor Ioan James' 60th birthday. Ioan James has made significant contributions to homotopy theory, highlighting problems and initiating new methods. The present volume contains papers from internationally distinguished researcher workers which lead on from recent and exciting breakthroughs. It will be important for all homotopy theorists as both a statement of current research and as a signpost for new directions.
The first part of this research monograph discusses general properties of "G"-ENRBs - Euclidean Neighbourhood Retracts over "B" with action of a compact Lie group "G" - and their relations with fibrations, continuous submersions, and fibre bundles. It thus addresses equivariant point set topology as well as equivariant homotopy theory. Notable tools are vertical Jaworowski criterion and an equivariant transversality theorem. The second part presents equivariant cohomology theory showing that equivariant fixed point theory is isomorphic to equivariant stable cohomotopy theory. A crucial result is the sum decomposition of the equivariant fixed point index which provides an insight into the structure of the theory's coefficient group. Among the consequences of the sum formula are some Borsuk-Ulam theorems as well as some folklore results on compact Lie-groups. The final section investigates the fixed point index in equivariant "K"-theory. The book is intended to be a thorough and comprehensive presentation of its subject. The reader should be familiar with the basics of the theory of compact transformation groups. Good knowledge of algebraic topology - both homotopy and homology theory - is assumed. For the advanced reader, the book may serve as a base for further research. The student will be introduced into equivariant fixed point theory; he may find it helpful for further orientation.
This volume is a collection of papers dedicated to the memory of V. A. Rohlin (1919-1984) - an outstanding mathematician and the founder of the Leningrad topological school. It includes survey and research papers on topology of manifolds, topological aspects of the theory of complex and real algebraic varieties, topology of projective configuration spaces and spaces of convex polytopes.
A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.
The contributions making up this volume are expanded versions of the courses given at the C.I.M.E. Summer School on the Theory of Moduli. |
![]() ![]() You may like...
Networks, Knowledge Brokers, and the…
Matthew S. Weber, Itzhak Yanovitzky
Hardcover
R4,252
Discovery Miles 42 520
Style, Mediation, and Change…
Janus Mortensen, Nikolas Coupland, …
Hardcover
R3,991
Discovery Miles 39 910
Integral Methods in Science and…
Mario Paul Ahues, Alain R. Largillier
Hardcover
R1,696
Discovery Miles 16 960
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
|