![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel Lopez-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.
Topology is a large subject with several branches, broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad range of mathematical disciplines, while algebraic topology offers as a powerful tool for studying problems in geometry and numerous other areas of mathematics. This book presents the basic concepts of topology, including virtually all of the traditional topics in point-set topology, as well as elementary topics in algebraic topology such as fundamental groups and covering spaces. It also discusses topological groups and transformation groups. When combined with a working knowledge of analysis and algebra, this book offers a valuable resource for advanced undergraduate and beginning graduate students of mathematics specializing in algebraic topology and harmonic analysis.
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.
Intersection homology is a version of homology theory that extends Poincare duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise-linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology tool box, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields. This text includes both new research material and new proofs of previously-known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.
This book comprehensively examines various significant aspects of linear time-invariant systems theory, both for continuous-time and discrete-time. Using a number of new mathematical methods it provides complete and exact proofs of all the systems theoretic and electrical engineering results, as well as important results and algorithms demonstrated with nontrivial computer examples. The book is intended for readers who have completed the first two years of a university mathematics course. All further mathematical results required are proven in the book.
This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the "folklore". In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.
Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef-White theorem.
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications - Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
This book provides the theory for stratified spaces, along with
important examples and applications, that is analogous to the
surgery theory for manifolds. In the first expository account of
this field, Weinberger provides topologists with a new way of
looking at the classification theory of singular spaces with his
original results.
Plastics, films, and synthetic fibers are among typical examples of polymer materials fabricated industrially in massive quantities as the basis of modern social life. By comparison, polymers from biological resources, including proteins, DNAs, and cotton fibers, are essential in various processes in living systems. Such polymers are molecular substances, constituted by the linking of hundreds to tens of thousands of small chemical unit (monomer) components. Thus, the form of polymer molecules is frequently expressed by line geometries, and their linear and non-linear forms are believed to constitute the fundamental basis for their properties and functions. In the field of polymer chemistry and polymer materials science, the choice of macromolecules has continuously been extended from linear or randomly branched forms toward a variety of precisely controlled topologies by the introduction of intriguing synthetic techniques. Moreover, during the first decade of this century, a number of impressive breakthroughs have been achieved to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unique properties and functions based on the form, i.e., topology, of polymer molecules. The introduction and application of topological geometry (soft geometry) to polymer molecules is a crucial requirement to account for the basic geometrical properties of polymer chains uniquely flexible in nature, in contrast to small chemical compounds conceived upon Euclidian geometry (hard geometry) principles. Topological geometry and graph theory are introduced for the systematic classification and notation of the non-linear constructions of polymer molecules, including not only branched but also single cyclic and multicyclic polymer topologies. On that basis, the geometrical-topological relationship between different polymers having distinctive constructions is discussed. A unique conception of topological isomerism is thus formed, which contrasts with that of conventional constitutional and stereoisomerism occurring in small chemical compounds. Through the close collaboration of topology experts Shimokawa and Ishihara and the polymer chemist Tezuka, this monograph covers the fundamentals and selected current topics of topology applied in polymers and topological polymer chemistry. In particular, the aim is to provide novel insights jointly revealed through a unique interaction between mathematics (topology) and polymer materials science.
This book introduces the reader to the most important concepts and problems in the field of (2)-invariants. After some foundational material on group von Neumann algebras, (2)-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of (2)-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of (2)-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Luck's approximation theorem and its generalizations. The final chapter deals with (2)-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.
This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen's S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.
This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microlocal sheaf theory accessible to a wide audience of readers interested in symplectic geometry. Much of this material has, until now, been scattered throughout the existing literature; this text finally collects that information into one convenient volume. After providing an overview of symplectic geometry, ranging from its background to modern developments, the author reviews the preliminaries with precision. This refresher ensures readers are prepared for the thorough exploration of the Tamarkin category that follows. A variety of applications appear throughout, such as sheaf quantization, sheaf interleaving distance, and sheaf barcodes from projectors. An appendix offers additional perspectives by highlighting further useful topics. Quantitative Tamarkin Theory is ideal for graduate students interested in symplectic geometry who seek an accessible alternative to the algebraic analysis method. A background in algebra and differential geometry is recommended. This book is part of the "Virtual Series on Symplectic Geometry" http://www.springer.com/series/16019
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.
This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars. Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X x I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are. Simplicial complexes are very useful in topology and are indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff-James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
Algebraic topology is a basic part of modern mathematics, and some
knowledge of this area is indispensable for any advanced work
relating to geometry, including topology itself, differential
geometry, algebraic geometry, and Lie groups. This book provides a
detailed treatment of algebraic topology both for teachers of the
subject and for advanced graduate students in mathematics either
specializing in this area or continuing on to other fields.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems. |
![]() ![]() You may like...
Super Safari American English Level 2…
Herbert Puchta, Gunter Gerngross, …
DVD
Beauty And The Beast - Blu-Ray + DVD
Emma Watson, Dan Stevens, …
Blu-ray disc
R347
Discovery Miles 3 470
|