Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology
THE main purpose of writing this monograph is to give a picture of the progress made in recent years in understanding three of the deepest results of Functional Analysis-namely, the open-mapping and closed graph theorems, and the so-called Krein-~mulian theorem. In order to facilitate the reading of this book, some of the important notions and well-known results about topological and vector spaces have been collected in Chapter 1. The proofs of these results are omitted for the reason that they are easily available in any standard book on topology and vector spaces e.g. Bourbaki [2], Keiley [18], or Koethe [22]. The results of Chapter 2 are supposed to be weil known for a study of topological vector spaces as weil. Most of the definitions and notations of Chapter 2 are taken from Bourbaki's books [3] and [4] with some trimming and pruning here and there. Keeping the purpose of this book in mind, the presentation of the material is effected to give a quick resume of the results and the ideas very commonly used in this field, sacrificing the generality of some theorems for which one may consult other books, e.g. [3], [4], and [22]. From Chapter 3 onward, a detailed study of the open-mapping and closed-graph theorems as weil as the Krein-~mulian theorem has been carried out. For the arrangement of the contents of Chapters 3 to 7, see the Historical Notes (Chapter 8).
Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In "Higher Topos Theory," Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.
This self-contained and highly detailed study considers projective spaces of three dimensions over a finite field. It is the second and core volume of a three-volume treatise on finite projective spaces, the first volume being Projective Geometrics Over Finite Fields (OUP, 1979). The present work restricts itself to three dimensions, and considers both topics which are analogous of geometry over the complex numbers and topics that arise out of the modern theory of incidence structures. The book also examines properties of four and five dimensions, fundamental applications to translation planes, simple groups, and coding theory.
Geometry provides a whole range of views on the universe, serving as the inspiration, technical toolkit and ultimate goal for many branches of mathematics and physics. This book introduces the ideas of geometry, and includes a generous supply of simple explanations and examples. The treatment emphasises coordinate systems and the coordinate changes that generate symmetries. The discussion moves from Euclidean to non-Euclidean geometries, including spherical and hyperbolic geometry, and then on to affine and projective linear geometries. Group theory is introduced to treat geometric symmetries, leading to the unification of geometry and group theory in the Erlangen program. An introduction to basic topology follows, with the Moebius strip, the Klein bottle and the surface with g handles exemplifying quotient topologies and the homeomorphism problem. Topology combines with group theory to yield the geometry of transformation groups,having applications to relativity theory and quantum mechanics. A final chapter features historical discussions and indications for further reading. With minimal prerequisites, the book provides a first glimpse of many research topics in modern algebra, geometry and theoretical physics. The book is based on many years' teaching experience, and is thoroughly class-tested. There are copious illustrations, and each chapter ends with a wide supply of exercises. Further teaching material is available for teachers via the web, including assignable problem sheets with solutions.
Aimed at graduate students, this textbook provides an accessible and comprehensive introduction to operator theory. Rather than discuss the subject in the abstract, this textbook covers the subject through twenty examples of a wide variety of operators, discussing the norm, spectrum, commutant, invariant subspaces, and interesting properties of each operator. The text is supplemented by over 600 end-of-chapter exercises, designed to help the reader master the topics covered in the chapter, as well as providing an opportunity to further explore the vast operator theory literature. Each chapter also contains well-researched historical facts which place each chapter within the broader context of the development of the field as a whole.
In topology the three basic concepts of metrics, topologies and uniformities have been treated so far as separate entities by means of different methods and terminology. This work treats all three concepts as a special case of the concept of approach spaces. This theory provides an answer to natural questions in the interplay between topological and metric spaces by introducing a well suited supercategory of TOP and MET. The theory makes it possible to equip initial structures of metricizable topological spaces with a canonical structure, preserving the numerical information of the metrics. It provides a solid basis for approximation theory, turning ad hoc notions into canonical concepts, and it unifies topological and metric notions. The book explains the richness of approach structures in detail; it provides a comprehensive explanation of the categorical set-up, develops the basic theory and provides many examples, displaying links with various areas of mathematics such as approximation theory, probability theory, analysis and hyperspace theory. This book is intended for lecturers, researchers and graduate students in the following areas: topology, categorical theory, category th
This book formally introduces synthetic differential topology, a natural extension of the theory of synthetic differential geometry which captures classical concepts of differential geometry and topology by means of the rich categorical structure of a necessarily non-Boolean topos and of the systematic use of logical infinitesimal objects in it. Beginning with an introduction to those parts of topos theory and synthetic differential geometry necessary for the remainder, this clear and comprehensive text covers the general theory of synthetic differential topology and several applications of it to classical mathematics, including the calculus of variations, Mather's theorem, and Morse theory on the classification of singularities. The book represents the state of the art in synthetic differential topology and will be of interest to researchers in topos theory and to mathematicians interested in the categorical foundations of differential geometry and topology.
Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.
Following on from the success of Fractal Geometry: Mathematical Foundations and Applications, this new sequel presents a variety of techniques in current use for studying the mathematics of fractals. Much of the material presented in this book has come to the fore in recent years. This includes methods for studying dimensions and other parameters of fractal sets and measures, as well as more sophisticated techniques such as the thermodynamic formalism and tangent measures. In addition to general theory, many examples and applications are described, in areas such as differential equations and harmonic analysis. The book is mathematically precise, but aims to give an intuitive feel for the subject, with underlying concepts described in a clear and accessible manner. The reader is assumed to be familiar with material from Fractal Geometry, but the main ideas and notation are reviewed in the first two chapters. Each chapter ends with brief notes on the development and current state of the subject. Exercises are included to reinforce the concepts. The author’s clear style and the up-to-date coverage of the subject make this book essential reading for all those who wish to develop their understanding of fractal geometry. Also available: Fractal Geometry: Mathematical Foundations and Applications Hardback ISBN 0-471-92287-0 Paperback ISBN 0-471-96777-7
From the preface: "Hopf algebras, Hopf fibration of spheres, Hopf-Rinow complete Riemannian manifolds, Hopf theorem on the ends of groups - can one imagine modern mathematics without all this? Many other concepts and methods, fundamental in various mathematical disciplines, also go back directly or indirectly to the work of Heinz Hopf: homological algebra, singularities of vector fields and characteristic classes, group-like spaces, global differential geometry, and the whole algebraisation of topology with its influence on group theory, analysis and algebraic geometry. It is astonishing to realize that this oeuvre of a whole scientific life consists of only about 70 writings. Astonishing also the transparent and clear style, the concreteness of the problems, and how abstract and far-reaching the methods Hopf invented."
A user-friendly introduction to metric and topological groups "Topological Groups: An Introduction" provides a self-contained presentation with an emphasis on important families of topological groups. The book uniquely provides a modern and balanced presentation by using metric groups to present a substantive introduction to topics such as duality, while also shedding light on more general results for topological groups. Filling the need for a broad and accessible introduction to the subject, the book begins with coverage of groups, metric spaces, and topological spaces before introducing topological groups. Since linear spaces, algebras, norms, and determinants are necessary tools for studying topological groups, their basic properties are developed in subsequent chapters. For concreteness, product topologies, quotient topologies, and compact-open topologies are first introduced as metric spaces before their open sets are characterized by topological properties. These metrics, along with invariant metrics, act as excellent stepping stones to the subsequent discussions of the following topics: Matrix groups Connectednesss of topological groups Compact groups Character groups Exercises found throughout the book are designed so both novice and advanced readers will be able to work out solutions and move forward at their desired pace. All chapters include a variety of calculations, remarks, and elementary results, which are incorporated into the various examples and exercises. "Topological Groups: An Introduction" is an excellent book for advanced undergraduate and graduate-level courses on the topic. The book also serves as a valuable resource for professionals working in the fields of mathematics, science, engineering, and physics.
After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincare in 2015. The chapters in this volume cover a broad range of topics in mathematics, including diffeologies, synthetic differential geometry, microlocal analysis, topos theory, infinity-groupoids, homotopy type theory, category-theoretic methods in geometry, stacks, derived geometry, and noncommutative geometry. It is addressed primarily to mathematicians and mathematical physicists, but also to historians and philosophers of these disciplines.
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer's body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer's ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.
Now more that a quarter of a century old, intersection homology theory has proven to be a powerful tool in the study of the topology of singular spaces, with deep links to many other areas of mathematics, including combinatorics, differential equations, group representations, and number theory. Like its predecessor, An Introduction to Intersection Homology Theory, Second Edition introduces the power and beauty of intersection homology, explaining the main ideas and omitting, or merely sketching, the difficult proofs. It treats both the basics of the subject and a wide range of applications, providing lucid overviews of highly technical areas that make the subject accessible and prepare readers for more advanced work in the area. This second edition contains entirely new chapters introducing the theory of Witt spaces, perverse sheaves, and the combinatorial intersection cohomology of fans. Intersection homology is a large and growing subject that touches on many aspects of topology, geometry, and algebra. With its clear explanations of the main ideas, this book builds the confidence needed to tackle more specialist, technical texts and provides a framework within which to place them.
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. * Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals * Carefully explains each topic using illustrative examples and diagrams * Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics * Features a wide range of exercises, enabling readers to consolidate their understanding * Supported by a website with solutions to exercises and additional material http://www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)
Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot's notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery's notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza's notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol'd conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism. |
You may like...
Groupoid Metrization Theory - With…
Dorina Mitrea, Irina Mitrea, …
Hardcover
R2,876
Discovery Miles 28 760
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, …
Hardcover
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,370
Discovery Miles 43 700
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
|