![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
THE main purpose of writing this monograph is to give a picture of the progress made in recent years in understanding three of the deepest results of Functional Analysis-namely, the open-mapping and closed graph theorems, and the so-called Krein-~mulian theorem. In order to facilitate the reading of this book, some of the important notions and well-known results about topological and vector spaces have been collected in Chapter 1. The proofs of these results are omitted for the reason that they are easily available in any standard book on topology and vector spaces e.g. Bourbaki [2], Keiley [18], or Koethe [22]. The results of Chapter 2 are supposed to be weil known for a study of topological vector spaces as weil. Most of the definitions and notations of Chapter 2 are taken from Bourbaki's books [3] and [4] with some trimming and pruning here and there. Keeping the purpose of this book in mind, the presentation of the material is effected to give a quick resume of the results and the ideas very commonly used in this field, sacrificing the generality of some theorems for which one may consult other books, e.g. [3], [4], and [22]. From Chapter 3 onward, a detailed study of the open-mapping and closed-graph theorems as weil as the Krein-~mulian theorem has been carried out. For the arrangement of the contents of Chapters 3 to 7, see the Historical Notes (Chapter 8).
This self-contained and highly detailed study considers projective spaces of three dimensions over a finite field. It is the second and core volume of a three-volume treatise on finite projective spaces, the first volume being Projective Geometrics Over Finite Fields (OUP, 1979). The present work restricts itself to three dimensions, and considers both topics which are analogous of geometry over the complex numbers and topics that arise out of the modern theory of incidence structures. The book also examines properties of four and five dimensions, fundamental applications to translation planes, simple groups, and coding theory.
In topology the three basic concepts of metrics, topologies and uniformities have been treated so far as separate entities by means of different methods and terminology. This work treats all three concepts as a special case of the concept of approach spaces. This theory provides an answer to natural questions in the interplay between topological and metric spaces by introducing a well suited supercategory of TOP and MET. The theory makes it possible to equip initial structures of metricizable topological spaces with a canonical structure, preserving the numerical information of the metrics. It provides a solid basis for approximation theory, turning ad hoc notions into canonical concepts, and it unifies topological and metric notions. The book explains the richness of approach structures in detail; it provides a comprehensive explanation of the categorical set-up, develops the basic theory and provides many examples, displaying links with various areas of mathematics such as approximation theory, probability theory, analysis and hyperspace theory. This book is intended for lecturers, researchers and graduate students in the following areas: topology, categorical theory, category th
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on 'Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects' and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank's contribution gives an overview of the use of etale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Ostvaer, based in part on the Nelder Fellow lecture series by Ostvaer, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
The language of ends and (co)ends provides a natural and general way of expressing many phenomena in category theory, in the abstract and in applications. Yet although category-theoretic methods are now widely used by mathematicians, since (co)ends lie just beyond a first course in category theory, they are typically only used by category theorists, for whom they are something of a secret weapon. This book is the first systematic treatment of the theory of (co)ends. Aimed at a wide audience, it presents the (co)end calculus as a powerful tool to clarify and simplify definitions and results in category theory and export them for use in diverse areas of mathematics and computer science. It is organised as an easy-to-cite reference manual, and will be of interest to category theorists and users of category theory alike.
This book introduces the theory of enveloping semigroups-an important tool in the field of topological dynamics-introduced by Robert Ellis. The book deals with the basic theory of topological dynamics and touches on the advanced concepts of the dynamics of induced systems and their enveloping semigroups. All the chapters in the book are well organized and systematically dealing with introductory topics through advanced research topics. The basic concepts give the motivation to begin with, then the theory, and finally the new research-oriented topics. The results are presented with detailed proof, plenty of examples and several open questions are put forward to motivate for future research. Some of the results, related to the enveloping semigroup, are new to the existing literature. The enveloping semigroups of the induced systems is considered for the first time in the literature, and some new results are obtained. The book has a research-oriented flavour in the field of topological dynamics.
William Thurston (1946-2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of areas of mathematics, from foliations, contact structures, and Teichmuller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. In What's Next?, many of today's leading mathematicians describe recent advances and future directions inspired by Thurston's transformative ideas. This book brings together papers delivered by his colleagues and former students at "What's Next? The Mathematical Legacy of Bill Thurston," a conference held in June 2014 at Cornell University. It discusses Thurston's fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. Incisive and wide-ranging, the book explores how he introduced new ways of thinking about and doing mathematics-innovations that have had a profound and lasting impact on the mathematical community as a whole-and also features two papers based on Thurston's unfinished work in dynamics.
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue - not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincare brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology.By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Poincare in their full brilliance.
This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone-Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand-Kolmogoroff theorem. The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the concepts leading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.
In most mathematics textbooks, the most exciting part of mathematics - the process of invention and discovery - is completely hidden from the reader. The aim of ""Knots and Surfaces"" is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequisites for understanding the text. Any college student interested in discovering the beauty of mathematics will enjoy a course taught from this book. The book has also been used successfully with non science students who want to fulfill a science requirement. Also available from the AMS by David W. Farmer is ""Groups and Symmetry: A Guide to Discovering Mathematics"".
This second of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, algebra, and the theory of numbers. Offering a proper background on topology, analysis, and algebra, this volume discusses the topological groups and topological vector spaces that provide many interesting geometrical objects which relate algebra with geometry and analysis. This volume follows a systematic and comprehensive elementary approach to the topology related to manifolds, emphasizing differential topology. It further communicates the history of the emergence of the concepts leading to the development of topological groups, manifolds, and also Lie groups as mathematical topics with their motivations. This book will promote the scope, power, and active learning of the subject while covering a wide range of theories and applications in a balanced unified way.
Now more that a quarter of a century old, intersection homology theory has proven to be a powerful tool in the study of the topology of singular spaces, with deep links to many other areas of mathematics, including combinatorics, differential equations, group representations, and number theory. Like its predecessor, An Introduction to Intersection Homology Theory, Second Edition introduces the power and beauty of intersection homology, explaining the main ideas and omitting, or merely sketching, the difficult proofs. It treats both the basics of the subject and a wide range of applications, providing lucid overviews of highly technical areas that make the subject accessible and prepare readers for more advanced work in the area. This second edition contains entirely new chapters introducing the theory of Witt spaces, perverse sheaves, and the combinatorial intersection cohomology of fans. Intersection homology is a large and growing subject that touches on many aspects of topology, geometry, and algebra. With its clear explanations of the main ideas, this book builds the confidence needed to tackle more specialist, technical texts and provides a framework within which to place them.
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer's body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer's ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.
Topology, the foundation of modern analysis, arose historically as a way to organize ideas like compactness and connectedness which had emerged from analysis. Similarly, recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results (such as attractors, chain recurrence, and basic sets). This book collects these results, both old and new, and organizes them into a natural foundation for all aspects of dynamical systems theory. No existing book is comparable in content or scope. Requiring background in point-set topology and some degree of ""mathematical sophistication"", Akin's book serves as an excellent textbook for a graduate course in dynamical systems theory. In addition, Akin's reorganization of previously scattered results makes this book of interest to mathematicians and other researchers who use dynamical systems in their work.
Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen-Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.
The 2019 'Australian-German Workshop on Differential Geometry in the Large' represented an extraordinary cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks from prominent keynote speakers from across the globe, treating geometric evolution equations, structures on manifolds, non-negative curvature and Alexandrov geometry, and topics in differential topology. A joy to the expert and novice alike, this proceedings volume touches on topics as diverse as Ricci and mean curvature flow, geometric invariant theory, Alexandrov spaces, almost formality, prescribed Ricci curvature, and Kahler and Sasaki geometry.
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot's notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery's notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza's notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol'd conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism.
This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of etale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduce the key figures behind its development. They proceed to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations. Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.
Physics/Mathematics Every advanced undergraduate and graduate student of physics must master the concepts of vectors and vector analysis. Yet most textbooks cover this topic by merely repeating the introductory-level treatment based on a limited algebraic or analytic view of the subject. By contrast, Geometrical Vectors introduces a more sophisticated approach, which not only brings together many loose ends of the traditional treatment, but also leads directly into the practical use of vectors in general curvilinear coordinates by carefully separating those relationships which are topologically invariant from those which are not. Based on the essentially geometric nature of the subject, this approach builds consistently on students' prior knowledge and geometrical intuition. Written in an informal and personal style, Geometrical Vectors provides a handy guide for any student of vector analysis. Clear, carefully constructed line drawings illustrate key points in the text, and a set of problems is provided at the end of each chapter (except the Epilogue) to deepen understanding of the material presented. Pertinent physical examples are cited to show how geometrically informed methods of vector analysis may be applied to situations of special interest to physicists.
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics--connected and path-connected spaces, compact spaces, separation axioms, and metric spaces--Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate contextSections with exercise sets ranging in difficulty from easy to fairly challengingExercises that are very creative in their approaches and work well in a classroom settingA supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Differential Geometry and Its Applications studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole. It mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. That mix of ideas offers students the opportunity to visualize concepts through the use of computer algebra systems such as Maple. Differential Geometry and Its Applications emphasizes that this visualization goes hand in hand with understanding the mathematics behind the computer construction. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract. |
![]() ![]() You may like...
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,473
Discovery Miles 44 730
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon
Hardcover
R3,744
Discovery Miles 37 440
Integrability, Quantization, and…
Sergey Novikov, Igor Krichever, …
Paperback
R3,602
Discovery Miles 36 020
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,211
Discovery Miles 22 110
Motivic Integration
Antoine Chambert-Loir, Johannes Nicaise, …
Hardcover
R3,833
Discovery Miles 38 330
|