![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.
This book describes the representations of Lie superalgebras that are yielded by a graded version of Hudson-Parthasarathy quantum stochastic calculus. Quantum stochastic calculus and grading theory are given concise introductions, extending readership to mathematicians and physicists with a basic knowledge of algebra and infinite-dimensional Hilbert spaces. The develpment of an explicit formula for the chaotic expansion of a polynomial of quantum stochastic integrals is particularly interesting. The book aims to provide a self-contained exposition of what is known about Z_2-graded quantum stochastic calculus and to provide a framework for future research into this new and fertile area.
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
This is the softcover reprint of the 1974 English translation of the later chapters of Bourbaki 's Topologie Generale. Initial chapters study subgroups and quotients of R, real vector spaces and projective spaces, and additive groups Rn. Analogous properties are then studied for complex numbers. Later chapters illustrate the use of real numbers in general topology and discuss various topologies of function spaces and approximation of functions.
In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.
The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
This book constitutes the thoroughly refereed and revised post-workshop proceedings of the International Workshop on Automated Deduction in Geometry, held in Toulouse, France, in September 1996. The revised extended papers accepted for inclusion in the volume were selected on the basis of double reviewing. Among the topics covered are automated geometric reasoning and the deduction applied to Dixon resultants, Grobner bases, characteristic sets, computational geometry, algebraic geometry, and planet motion; furthermore the system REDLOG is demonstrated and the verification of geometric statements as well as the automated production of proof in Euclidean Geometry are present.
From the reviews: "This volume... consists of two papers. The
first, written by V.V. Shokurov, is devoted to the theory of
Riemann surfaces and algebraic curves. It is an excellent overview
of the theory of relations between Riemann surfaces and their
models - complex algebraic curves in complex projective spaces. ...
The second paper, written by V.I. Danilov, discusses algebraic
varieties and schemes. ... I can recommend the book as a very good
introduction to the basic algebraic geometry." "European
Mathematical Society" "Newsletter, 1996"
This is the softcover reprint of the English translation of 1971 (available from Springer since 1989) of the first 4 chapters of Bourbaki's Topologie générale. It gives all the basics of the subject, starting from definitions. Important classes of topological spaces are studied, uniform structures are introduced and applied to topological groups. Real numbers are constructed and their properties established. Part II, comprising the later chapters, Ch. 5-10, is also available in English in softcover.
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
The articles in this volume were written to commemorate Reinhold Remmert's 60th birthday in June, 1990. They are surveys, meant to facilitate access to some of the many aspects of the theory of complex manifolds, and demonstrate the interplay between complex analysis and many other branches of mathematics, algebraic geometry, differential topology, representations of Lie groups, and mathematical physics being only the most obvious of these branches. Each of these articles should serve not only to describe the particular circle of ideas in complex analysis with which it deals but also as a guide to the many mathematical ideas related to its theme.
From the reviews: "... In the past, more of the leading mathematicians proposed and solved problems than today, and there were problem departments in many journals. Pólya and Szego must have combed all of the large problem literature from about 1850 to 1925 for their material, and their collection of the best in analysis is a heritage of lasting value. The work is unashamedly dated. With few exceptions, all of its material comes from before 1925. We can judge its vintage by a brief look at the author indices (combined). Let's start on the C's: Cantor, Carathéodory, Carleman, Carlson, Catalan, Cauchy, Cayley, Cesàro,... Or the L's: Lacour, Lagrange, Laguerre, Laisant, Lambert, Landau, Laplace, Lasker, Laurent, Lebesgue, Legendre,... Omission is also information: Carlitz, Erdös, Moser, etc."Bull.Americ.Math.Soc.
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
The Blaubeuren Conference "Theory and Practice of Geometric Modeling" has become a meeting place for leading experts from industrial and academic research institutions, CAD system developers and experienced users to exchange new ideas and to discuss new concepts and future directions in geometric modeling. The relaxed and calm atmosphere of the Heinrich-Fabri-Institute in Blaubeuren provides the appropriate environment for profound and engaged discussions that are not equally possible on other occasions. Real problems from current industrial projects as well as theoretical issues are addressed on a high scientific level. This book is the result of the lectures and discussions during the conference which took place from October 14th to 18th, 1996. The contents is structured in 4 parts: Mathematical Tools Representations Systems Automated Assembly. The editors express their sincere appreciation to the contributing authors, and to the members of the program committee for their cooperation, the careful reviewing and their active participation that made the conference and this book a success.
Any topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in the 3-spheres are generalized to a certain class of oriented 3-manifolds (submanifolds of rational homology 3-spheres). The techniques needed are described in the book but basic knowledge in topology and algebra is assumed. The book should be of interst to those working in topology, in particular knot theory and low-dimensional topology.
Rather than choosing one point of view of modern topology, the author concentrates on concrete problems in spaces with a few dimensions, introducing only as much algebraic machinery as necessary. This makes it possible to see a wider variety of important features in the subject than is common in introductory texts; it is also in line with the historical development of the subject. Aimed at students not necessarily intending to specialise in algebraic topology, the first part of the book emphasises relations with calculus and uses these ideas to prove the Jordan curve theorem, before going on to study fundamental groups and covering spaces so as to emphasise group actions. A final section gives a taste of the generalisation to higher dimensions.
This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calculation, numerous calculations, finite generation results, Whitehead torsion and other areas. Some 330 references are given. The book assumes familiarity with cell complexes, homology and homotopy. Graduate students and established researchers can use it for learning, for reference, and to determine the current state of knowledge.
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
Topology optimization is a relatively new and rapidly expanding field of structural mechanics. It deals with some of the most difficult problems of mechanical sciences but it is also of considerable practical interest, because it can achieve much greater savings than mere cross-section or shape optimization.
The present book contains the lecture notes from a "Nachdiplomvorlesung," a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts."
This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.
The book describes some interactions of topology with other areas of mathematics and it requires only basic background. The first chapter deals with the topology of pointwise convergence and proves results of Bourgain, Fremlin, Talagrand and Rosenthal on compact sets of Baire class-1 functions. In the second chapter some topological dynamics of beta-N and its applications to combinatorial number theory are presented. The third chapter gives a proof of the Ivanovskii-Kuzminov-Vilenkin theorem that compact groups are dyadic. The last chapter presents Marjanovic's classification of hyperspaces of compact metric zerodimensional spaces.
The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.
This is a new in paperback version of a very successful monograph first published in 1980. The book presents a survey of the geometric quantization theory of Konstant and Souriau. For this new paperback edition the text has been extensively rewritten and brought up-to-date, with the addition of many new examples, and an expansion of the material on field theory. |
![]() ![]() You may like...
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon
Hardcover
R3,744
Discovery Miles 37 440
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,211
Discovery Miles 22 110
|