![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdos's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.
The book gathers the lectures given at the C.I.M.E. summer school "Quantum Cohomology" held in Cetraro (Italy) from June 30th to July 8th, 1997. The lectures and the subsequent updating cover a large spectrum of the subject on the field, from the algebro-geometric point of view, to the symplectic approach, including recent developments of string-branes theories and q-hypergeometric functions.
Celebrating a century of geometry and geometry teaching, this volume includes popular articles on Pythagoras, the golden ratio and recreational geometry. Thirty "Desert Island Theorems" from distinguished mathematicians and educators disclose surprising results. (Contributors include a Nobel Laureate and a Pulitzer Prize winner.) Co-published with The Mathematical Association of America.
The book provides an introduction to stratification theory leading the reader up to modern research topics in the field. The first part presents the basics of stratification theory, in particular the Whitney conditions and Mather's control theory, and introduces the notion of a smooth structure. Moreover, it explains how one can use smooth structures to transfer differential geometric and analytic methods from the arena of manifolds to stratified spaces. In the second part the methods established in the first part are applied to particular classes of stratified spaces like for example orbit spaces. Then a new de Rham theory for stratified spaces is established and finally the Hochschild (co)homology theory of smooth functions on certain classes of stratified spaces is studied. The book should be accessible to readers acquainted with the basics of topology, analysis and differential geometry.
This book consists essentially of notes which were written for an Advanced Course on Classifying Spaces and Cohomology of Groups. The course took place at the Centre de Recerca Mathematica (CRM) in Bellaterra from May 27 to June 2, 1998 and was part of an emphasis semester on Algebraic Topology. It consisted of two parallel series of 6 lectures of 90 minutes each and was intended as an introduction to new homotopy theoretic methods in group cohomology. The first part of the book is concerned with methods of decomposing the classifying space of a finite group into pieces made of classifying spaces of appropriate subgroups. Such decompositions have been used with great success in the last 10-15 years in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups in the sense of Dwyer and Wilkerson. For simplicity the emphasis here is on finite groups and on homological properties of various decompositions known as centralizer resp. normalizer resp. subgroup decomposition. A unified treatment of the various decompositions is given and the relations between them are explored. This is preceeded by a detailed discussion of basic notions such as classifying spaces, simplicial complexes and homotopy colimits.
Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In "Higher Topos Theory," Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichm ller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Computational engineering is the treatment of engineering tasks with computers. It is based on computational mathematics, which is presented here in a comprehensive handbook. Engineers and scientists who deal with engineering tasks have to handle large amounts of information, which must be created and structured in a systematic manner. This demands a high level of abstraction and therefore knowledge of the mathematical foundations. From the existing rich repertoire of mathematical theories and methods, the fundamentals of engineering computation are selected and presented in a coherent fashion. They are brought into a suitable order for specific engineering purposes, and their significance for typical applications is shown. The relevant definitions, notations and theories are presented in a durable form which is independent of the fast development of information and communication technology.
This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems. In the second edition, some material has been expanded for better comprehension.
This book is intended as a textbook for a first-year graduate course on algebraic topology, with as strong flavoring in smooth manifold theory. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. It covers most of the topics all topologists will want students to see, including surfaces, Lie groups and fibre bundle theory. With a thoroughly modern point of view, it is the first truly new textbook in topology since Spanier, almost 25 years ago. Although the book is comprehensive, there is no attempt made to present the material in excessive generality, except where generality improves the efficiency and clarity of the presentation.
This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperk hler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
The development of polynomial-elimination techniques from classical theory to modern algorithms has undergone a tortuous and rugged path. This can be observed L. van der Waerden's elimination of the "elimination theory" chapter from from B. his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug gestion to "eliminate the eliminators of elimination theory. " The renaissance and recognition of polynomial elimination owe much to the advent and advance of mod ern computing technology, based on which effective algorithms are implemented and applied to diverse problems in science and engineering. In the last decade, both theorists and practitioners have more and more realized the significance and power of elimination methods and their underlying theories. Active and extensive research has contributed a great deal of new developments on algorithms and soft ware tools to the subject, that have been widely acknowledged. Their applications have taken place from pure and applied mathematics to geometric modeling and robotics, and to artificial neural networks. This book provides a systematic and uniform treatment of elimination algo rithms that compute various zero decompositions for systems of multivariate poly nomials. The central concepts are triangular sets and systems of different kinds, in terms of which the decompositions are represented. The prerequisites for the concepts and algorithms are results from basic algebra and some knowledge of algorithmic mathematics."
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kahler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
This work presents a general theory as well as constructive methodology in order to solve "observation problems," namely, those problems that pertain to reconstructing the full information about a dynamical process on the basis of partial observed data. A general methodology to control processes on the basis of the observations is also developed. Illustrative but practical applications in the chemical and petroleum industries are shown.
This book is mainly devoted to the combinatorics of quadratic holomorphic dynamics. The conceptual kernel is a self-contained abstract counterpart of connected quadratic Julia sets which is built on Thurston's concept of a quadratic invariant lamination and on symbolic descriptions of the angle-doubling map. The theory obtained is illustrated in the complex plane. It is used to give rigorous proofs of some well-known and some partially new statements on the structure of the Mandelbrot set. The text is intended for graduate students and researchers. Some elementary knowledge in topology and in functions of one complex variable is assumed.
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
In this superb topology text, the readers not only learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, but also their role in understanding molecular structures. Most results described in the text are motivated by the questions of chemists or molecular biologists, though they often go beyond answering the original question asked. No specific mathematical or chemical prerequisites are required. The text is enhanced by nearly 200 illustrations and 100 exercises. With this fascinating book, undergraduate mathematics students escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists find simple and clear but rigorous definitions of mathematical concepts they handle intuitively in their work.
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin K hler manifolds such as Riemannian tensors and K hler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
Historically, science has strived to reduced complex problems to its simplest components, but more recently, it has recognized the merit of studying complex phenomena in situ. Fractal geometry is one such appealing approach, and this book discusses their application to complex problems in molecular biophysics. It provides a detailed, unified treatment of fractal aspects of protein and structure dynamics, fractal reaction kinetics in biochemical systems, sequence correlations in DNA and proteins, and descriptors of chaos in enzymatic systems. In an area that has been slow to acknowledge the use of fractals, this is an important addition to the literature, offering a glimpse of the wealth of possible applications. application to complex problems
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.
A substantially revised edition of the UTM volume, with a view to making the book far more accessible to undergraduates. It contains a larger number of detailed explanations and exercises, together with fully worked solutions to the essential problems and a new chapter on the historical aspects. |
![]() ![]() You may like...
Recycled Concrete - Technologies and…
Vivian W. Y. Tam, Mahfooz Soomro, …
Paperback
R4,737
Discovery Miles 47 370
Nonlinear Pedagogy and the Athletic…
James Rudd, Ian Renshaw, …
Paperback
R1,374
Discovery Miles 13 740
Human Orthopaedic Biomechanics…
Bernardo Innocenti, Fabio Galbusera
Paperback
Biomechanics: Trends in Modeling and…
Gerhard A. Holzapfel, Ray W. Ogden
Hardcover
R5,361
Discovery Miles 53 610
Physical Activity and Health - The…
David J Stensel, Adrianne E. Hardman, …
Paperback
R1,878
Discovery Miles 18 780
Solid Edge 2022 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R2,032
Discovery Miles 20 320
Democratic Constitutionalism in India…
Philipp Dann, Arun K. Thiruvengadam
Hardcover
R3,491
Discovery Miles 34 910
|