Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
This book constitutes the proceedings of the 6th International Workshop on Computational Topology in Image Context, CTIC 2016, held in Marseille, France, in June 2016. The 24 papers presented in this volume were carefully reviewed and selected from 35 submissions. Additionally, this volume contains 2 invited papers. CTIC covers a wide range of topics such as: topological invariants and their computation, homology, cohomology, linking number, fundamental groups; algorithm optimization in discrete geometry, transfer of mathematical tools, parallel computation in multi-dimensional volume context, hierarchical approaches; experimental evaluation of algorithms and heuristics; combinatorial or multi-resolution models; discrete or computational topology; geometric modeling guided by topological constraints; computational topological dynamics; and use of topological information in discrete geometry applications.
Based on the author's course for first-year graduate students this well-written text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises.
Moduli theory is the study of how objects, typically in algebraic geometry but sometimes in other areas of mathematics, vary in families and is fundamental to an understanding of the objects themselves. First formalised in the 1960s, it represents a significant topic of modern mathematical research with strong connections to many areas of mathematics (including geometry, topology and number theory) and other disciplines such as theoretical physics. This book, which arose from a programme at the Isaac Newton Institute in Cambridge, is an ideal way for graduate students and more experienced researchers to become acquainted with the wealth of ideas and problems in moduli theory and related areas. The reader will find articles on both fundamental material and cutting-edge research topics, such as: algebraic stacks; BPS states and the P = W conjecture; stability conditions; derived differential geometry; and counting curves in algebraic varieties, all written by leading experts.
The Symbolic Universe considers the ways in which many leading mathematicians between 1890 and 1930 attempted to apply geometry to physics. It concentrates on responses to Einstein's theories of special and general relativity, but also considers the philosophical implications of these ideas.
The aim of the book is to give a broad introduction of topology to undergraduate students. It covers the most important and useful parts of the point-set as well as the combinatorial topology. The development of the material is from simple to complex, concrete to abstract, and appeals to the intuition of readers. Attention is also paid to how topology is actually used in the other fields of mathematics. Over 150 illustrations, 160 examples and 600 exercises will help readers to practice and fully understand the subject. Contents: Set and Map Metric Space Graph Topology Topological Concepts Complex Topological Properties Surface Topics in Point Set Topology Index
I.M.Gelfand, one of the leading contemporary mathematicians, largely determined the modern view of functional analysis with its numerous relations to other branches of mathematics, including mathematical physics, algebra, topology, differential geometry and analysis. With the publication of these Collected Papers in three volumes Gelfand gives a representative choice of his papers written in the last fifty years. Gelfand's research led to the development of remarkable mathematical theories - most now classics - in the field of Banach algebras, infinite-dimensional representations of Lie groups, the inverse Sturm-Liouville problem, cohomology of infinite-dimensional Lie algebras, integral geometry, generalized functions and general hypergeometric functions. The corresponding papers form the major part of the Collected Papers. Some articles on numerical methods and cybernetics as well as a few on biology are included. A substantial part of the papers have been translated into English especially for this edition. This edition is rounded off by a preface by S.G.Gindikin, a contribution by V.I.Arnold and an extensive bibliography with almost 500 references. Gelfand's Collected Papers will provide stimulating and serendipitous reading for researchers in a multitude of mathematical disciplines.
The 2019 'Australian-German Workshop on Differential Geometry in the Large' represented an extraordinary cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks from prominent keynote speakers from across the globe, treating geometric evolution equations, structures on manifolds, non-negative curvature and Alexandrov geometry, and topics in differential topology. A joy to the expert and novice alike, this proceedings volume touches on topics as diverse as Ricci and mean curvature flow, geometric invariant theory, Alexandrov spaces, almost formality, prescribed Ricci curvature, and Kahler and Sasaki geometry.
This book studies certain spaces of Riemannian metrics on both compact and non-compact manifolds. These spaces are defined by various sign-based curvature conditions, with special attention paid to positive scalar curvature and non-negative sectional curvature, though we also consider positive Ricci and non-positive sectional curvature. If we form the quotient of such a space of metrics under the action of the diffeomorphism group (or possibly a subgroup) we obtain a moduli space. Understanding the topology of both the original space of metrics and the corresponding moduli space form the central theme of this book. For example, what can be said about the connectedness or the various homotopy groups of such spaces? We explore the major results in the area, but provide sufficient background so that a non-expert with a grounding in Riemannian geometry can access this growing area of research.
This book lays the foundations for an exciting new area of research in descriptive set theory. It develops a robust connection between two active topics: forcing and analytic equivalence relations. This in turn allows the authors to develop a generalization of classical Ramsey theory. Given an analytic equivalence relation on a Polish space, can one find a large subset of the space on which it has a simple form? The book provides many positive and negative general answers to this question. The proofs feature proper forcing and Gandy-Harrington forcing, as well as partition arguments. The results include strong canonization theorems for many classes of equivalence relations and sigma-ideals, as well as ergodicity results in cases where canonization theorems are impossible to achieve. Ideal for graduate students and researchers in set theory, the book provides a useful springboard for further research.
The topic of this book sits at the interface of the theory of higher categories (in the guise of ( ,1)-categories) and the theory of properads. Properads are devices more general than operads and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter. Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.
Based on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics.
This unique book on modern topology looks well beyond traditional treatises and explores spaces that may, but need not, be Hausdorff. This is essential for domain theory, the cornerstone of semantics of computer languages, where the Scott topology is almost never Hausdorff. For the first time in a single volume, this book covers basic material on metric and topological spaces, advanced material on complete partial orders, Stone duality, stable compactness, quasi-metric spaces and much more. An early chapter on metric spaces serves as an invitation to the topic (continuity, limits, compactness, completeness) and forms a complete introductory course by itself. Graduate students and researchers alike will enjoy exploring this treasure trove of results. Full proofs are given, as well as motivating ideas, clear explanations, illuminating examples, application exercises and some more challenging problems for more advanced readers.
The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann-Roch-Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott-Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are Kahler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen's superconnections, and a version in families of the 'fantastic cancellations' of McKean-Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more. One tool used in the book is a deformation of the Hodge theory of the fibres to a hypoelliptic Hodge theory, in such a way that the relevant cohomological information is preserved, and 'fantastic cancellations' do occur for the deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, the harmonic oscillator has to be replaced by a quartic oscillator. Another idea developed in the book is that while classical elliptic Hodge theory is based on the Hermitian product on forms, the hypoelliptic theory involves a Hermitian pairing which is a mild modification of intersection pairing. Probabilistic considerations play an important role, either as a motivation of some constructions, or in the proofs themselves.
Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Folner's characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.
The dual space of a locally compact group G consists of the equivalence classes of irreducible unitary representations of G. This book provides a comprehensive guide to the theory of induced representations and explains its use in describing the dual spaces for important classes of groups. It introduces various induction constructions and proves the core theorems on induced representations, including the fundamental imprimitivity theorem of Mackey and Blattner. An extensive introduction to Mackey analysis is applied to compute dual spaces for a wide variety of examples. Fell's contributions to understanding the natural topology on the dual are also presented. In the final two chapters, the theory is applied in a variety of settings including topological Frobenius properties and continuous wavelet transforms. This book will be useful to graduate students seeking to enter the area as well as experts who need the theory of unitary group representations in their research.
This book introduces the reader to powerful methods of critical point theory and details successful contemporary approaches to many problems, some of which had proved resistant to attack by older methods. Topics covered include Morse theory, critical groups, the minimax principle, various notions of linking, jumping nonlinearities and the Fucik spectrum in an abstract setting, sandwich pairs and the cohomological index. Applications to semilinear elliptic boundary value problems, p-Laplacian problems and anisotropic systems are given. Written for graduate students and research scientists, the book includes numerous examples and presents more recent developments in the subject to bring the reader up to date with the latest research.
This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician's toolkit.
This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincare characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
Incorporated in this 2003 volume are the first two books in Mukai's series on moduli theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Amongst other things this volume includes an improved presentation of the classical foundations of invarant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts.
This third of the three-volume book is targeted as a basic course in algebraic topology and topology for fiber bundles for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, and algebra. Topics covered in this volume include homotopy theory, homology and cohomology theories, homotopy theory of fiber bundles, Euler characteristic, and the Betti number. It also includes certain classic problems such as the Jordan curve theorem along with the discussions on higher homotopy groups and establishes links between homotopy and homology theories, axiomatic approach to homology and cohomology as inaugurated by Eilenberg and Steenrod. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power and active learning of the subject, all the while covering a wide range of theory and applications in a balanced unified way.
Cohomology and homology modulo 2 helps the reader grasp more readily the basics of a major tool in algebraic topology. Compared to a more general approach to (co)homology this refreshing approach has many pedagogical advantages: 1. It leads more quickly to the essentials of the subject, 2. An absence of signs and orientation considerations simplifies the theory, 3. Computations and advanced applications can be presented at an earlier stage, 4. Simple geometrical interpretations of (co)chains. Mod 2 (co)homology was developed in the first quarter of the twentieth century as an alternative to integral homology, before both became particular cases of (co)homology with arbitrary coefficients. The first chapters of this book may serve as a basis for a graduate-level introductory course to (co)homology. Simplicial and singular mod 2 (co)homology are introduced, with their products and Steenrod squares, as well as equivariant cohomology. Classical applications include Brouwer's fixed point theorem, Poincare duality, Borsuk-Ulam theorem, Hopf invariant, Smith theory, Kervaire invariant, etc. The cohomology of flag manifolds is treated in detail (without spectral sequences), including the relationship between Stiefel-Whitney classes and Schubert calculus. More recent developments are also covered, including topological complexity, face spaces, equivariant Morse theory, conjugation spaces, polygon spaces, amongst others. Each chapter ends with exercises, with some hints and answers at the end of the book.
This third edition is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. Included in this new edition are several new chapters that present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding. "For the topology-minded reader, the book indeed has a lot to offer: written in a very personal, eloquent and instructive style it makes one of the highlights of nonlinear analysis accessible to a wide audience."-Monatshefte fur Mathematik (2006)
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.
A lavishly illustrated book that explores the language of curves that spans the human body, science, engineering, and artCurves are seductive. These smooth, organic lines and surfaces-like those of the human body-appeal to us in an instinctive, visceral way that straight lines or the perfect shapes of classical geometry never could. In this large-format book, lavishly illustrated in color throughout, Allan McRobie takes the reader on an alluring exploration of the beautiful curves that shape our world-from our bodies to Salvador Dali's paintings and the space-time fabric of the universe itself.The book focuses on seven curves-the fold, cusp, swallowtail, and butterfly, plus the hyperbolic, elliptical, and parabolic "umbilics"-and describes the surprising origins of their taxonomy in the catastrophe theory of mathematician Rene Thom. In an accessible discussion illustrated with many photographs of the human nude, McRobie introduces these curves and then describes their role in nature, science, engineering, architecture, art, and other areas. The reader learns how these curves play out in everything from the stability of oil rigs and the study of distant galaxies to rainbows, the patterns of light on pool floors, and even the shape of human genitals. The book also discusses the role of these curves in the work of such artists as David Hockney, Henry Moore, and Anish Kapoor, with particular attention given to the delicate sculptures of Naum Gabo and the final paintings of Dali, who said that Thom's theory "bewitched all of my atoms."A unique introduction to the language of beautiful curves, this book may change the way you see the world. |
You may like...
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Motivic Integration
Antoine Chambert-Loir, Johannes Nicaise, …
Hardcover
R3,656
Discovery Miles 36 560
Classical Hopf Algebras and Their…
Pierre Cartier, Frederic Patras
Hardcover
R3,536
Discovery Miles 35 360
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,399
Discovery Miles 23 990
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,146
Discovery Miles 31 460
|