![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
This book gives an account of the fundamental results in geometric stability theory, a subject that has grown out of categoricity and classification theory. This approach studies the fine structure of models of stable theories, using the geometry of forking; this often achieves global results relevant to classification theory. Topics range from Zilber-Cherlin classification of infinite locally finite homogenous geometries, to regular types, their geometries, and their role in superstable theories. The structure and existence of definable groups is featured prominently, as is work by Hrushovski. The book is unique in the range and depth of material covered and will be invaluable to anyone interested in modern model theory.
This book aims to fill the gap in the available literature on supermanifolds, describing the different approaches to supermanifolds together with various applications to physics, including some which rely on the more mathematical aspects of supermanifold theory.The first part of the book contains a full introduction to the theory of supermanifolds, comparing and contrasting the different approaches that exist. Topics covered include tensors on supermanifolds, super fibre bundles, super Lie groups and integration theory.Later chapters emphasise applications, including the superspace approach to supersymmetric theories, super Riemann surfaces and the spinning string, path integration on supermanifolds and BRST quantization.
This book presents to the reader a modern axiomatic construction of three-dimensional Euclidean geometry in a rigorous and accessible form. It is helpful for high school teachers who are interested in the modernization of the teaching of geometry.
One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced etale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to etale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and etale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of etale sheaves and elementary etale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in etale cohomology -- those of base change, purity, Poincare duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincare duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Cech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz's isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre's seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.
This is the first of two volumes which will provide an introduction to modern developments in the representation theory of finite groups and associative algebras. The subject is viewed from the perspective of homological algebra and the theory of representations of finite dimensional algebras; the author emphasises modular representations and the homological algebra associated with their categories. This volume is self-contained and independent of its successor, being primarily concerned with the exposition of the necessary background material. The heart of the book is a lengthy introduction to the (Auslander-Reiten) representation theory of finite dimensional algebras, in which the techniques of quivers with relations and almost split sequences are discussed in detail. Much of the material presented here has never appeared in book form. Consequently students and research workers studying group theory and indeed algebra in general will be grateful to Dr Benson for supplying an exposition of a good deal of the essential results of modern representation theory.
Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms to compute the number of rational points of such varieties. This is the first book to give a complete treatment of the theory, from full discussion of all the basics to descriptions of the very latest developments. Results and proofs are included that are not available elsewhere, local computations are explained, and many worked examples are given. This accessible tract will be of interest to researchers working in arithmetic geometry, p-adic cohomology theory, and related cryptographic areas.
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College. This book is published in cooperation with IAS/Park City Mathematics Institute.
Homogeneous spaces of linear algebraic groups lie at the
crossroads of algebraic geometry, theory of algebraic groups,
classical projective and enumerative geometry, harmonic analysis,
and representation theory. By standard reasons of algebraic
geometry, in order to solve various problems on a homogeneous
space, it is natural and helpful to compactify it while keeping
track of the group action, i.e., to consider equivariant
completions or, more generally, open embeddings of a given
homogeneous space. Such equivariant embeddings are the subject of
this book. We focus on the classification of equivariant embeddings
in terms of certain data of "combinatorial" nature (the Luna-Vust
theory) and description of various geometric and
representation-theoretic properties of these varieties based on
these data. The class of spherical varieties, intensively studied
during the last three decades, is of special interest in the scope
of this book. Spherical varieties include many classical examples,
such as Grassmannians, flag varieties, and varieties of quadrics,
as well as well-known toric varieties. We have attempted to cover
most of the important issues, including the recent substantial
progress obtained in and around the theory of spherical
varieties.
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to many-body theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a many-body problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed.The mathematical idea of self-adjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene.The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described.
Differential geometry and topology are essential tools for many
theoretical physicists, particularly in the study of condensed
matter physics, gravity, and particle physics. Written by
physicists for physics students, this text introduces geometrical
and topological methods in theoretical physics and applied
mathematics. It assumes no detailed background in topology or
geometry, and it emphasizes physical motivations, enabling students
to apply the techniques to their physics formulas and research.
Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry, and topology. This book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg-Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined, and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups, and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides the first full discussion of a central part of the study of the topology of manifolds since the mid 1990s.
This book is a collection of articles from several world-class researchers, and is inspired by Sir Roger Penrose's work. It gives an overview of the interaction between geometry and physics, from which many important developments have emerged. The volume collects together ideas from across the physical sciences, and indicates the many applications of geometrical ideas and techniques across mathematics and mathematical physics.
I1 More than one hundred years ago, Georg Frobenius [26] proved his remarkable theorem a?rming that, for a primep and a ?nite groupG, if the quotient of the normalizer by the centralizer of anyp-subgroup ofG is a p-group then, up to a normal subgroup of order prime top,G is ap-group. Ofcourse,itwouldbeananachronismtopretendthatFrobenius,when doing this theorem, was thinking the category - notedF in the sequel - G where the objects are thep-subgroups ofG and the morphisms are the group homomorphisms between them which are induced by theG-conjugation. Yet Frobenius' hypothesis is truly meaningful in this category. I2 Fifty years ago, John Thompson [57] built his seminal proof of the nilpotencyoftheso-called Frobeniuskernelofa FrobeniusgroupGwithar- ments - at that time completely new - which might be rewritten in terms ofF; indeed, some time later, following these kind of arguments, George G Glauberman [27] proved that, under some - rather strong - hypothesis onG, the normalizerNofasuitablenontrivial p-subgroup ofG controls fusion inG, which amounts to saying that the inclusionN?G induces an ? equivalence of categoriesF =F .
This English version of the path-breaking French book on this
subject gives the definitive treatment of the revolutionary
approach to measure theory, geometry, and mathematical physics
developed by Alain Connes. Profusely illustrated and invitingly
written, this book is ideal for anyone who wants to know what
noncommutative geometry is, what it can do, or how it can be used
in various areas of mathematics, quantization, and elementary
particles and fields.
Property (T) is a rigidity property for topological groups, first formulated by D. Kazhdan in the mid 1960's with the aim of demonstrating that a large class of lattices are finitely generated. Later developments have shown that Property (T) plays an important role in an amazingly large variety of subjects, including discrete subgroups of Lie groups, ergodic theory, random walks, operator algebras, combinatorics, and theoretical computer science. This monograph offers a comprehensive introduction to the theory. It describes the two most important points of view on Property (T): the first uses a unitary group representation approach, and the second a fixed point property for affine isometric actions. Via these the authors discuss a range of important examples and applications to several domains of mathematics. A detailed appendix provides a systematic exposition of parts of the theory of group representations that are used to formulate and develop Property (T).
Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference ``Introduction to the Theory of Valuations on Convex Sets''. Only a basic background in general convexity is assumed.
This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This second volume revisits JB*-triples, covers Zel'manov's celebrated work in Jordan theory, proves the unit-free variant of the Vidav-Palmer theorem, and develops the representation theory of alternative C*-algebras and non-commutative JB*-algebras. This completes the work begun in the first volume, which introduced these algebras and discussed the so-called non-associative Gelfand-Naimark and Vidav-Palmer theorems. This book interweaves pure algebra, geometry of normed spaces, and infinite-dimensional complex analysis. Novel proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, and an extensive bibliography.
The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the "Nemethi60: Geometry and Topology of Singularities" conference held at the Alfred Renyi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor Andras Nemethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales. |
![]() ![]() You may like...
Psychological Aspects of Sport-Related…
Gordon Bloom, Jeffrey Caron
Paperback
R1,382
Discovery Miles 13 820
Developing and Supporting Athlete…
Natalie Campbell, Abbe Brady, …
Paperback
R1,295
Discovery Miles 12 950
Vusi - Business & Life Lessons From a…
Vusi Thembekwayo
Paperback
![]()
The Canonical Ring of a Stacky Curve
John Voight, David Zureick-Brown
Paperback
R2,221
Discovery Miles 22 210
|