![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
Bundles, connections, metrics and curvature are the 'lingua franca'
of modern differential geometry and theoretical physics. This book
will supply a graduate student in mathematics or theoretical
physics with the fundamentals of these objects.
Graduate students and researchers in applied mathematics, optimization, engineering, computer science, and management science will find this book a useful reference which provides an introduction to applications and fundamental theories in nonlinear combinatorial optimization. Nonlinear combinatorial optimization is a new research area within combinatorial optimization and includes numerous applications to technological developments, such as wireless communication, cloud computing, data science, and social networks. Theoretical developments including discrete Newton methods, primal-dual methods with convex relaxation, submodular optimization, discrete DC program, along with several applications are discussed and explored in this book through articles by leading experts.
This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems - handy for understanding and self-study - and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.
The theory of Riemann surfaces occupies a very special place in
mathematics. It is a culmination of much of traditional calculus,
making surprising connections with geometry and arithmetic. It is
an extremely useful part of mathematics, knowledge of which is
needed by specialists in many other fields. It provides a model for
a large number of more recent developments in areas including
manifold topology, global analysis, algebraic geometry, Riemannian
geometry, and diverse topics in mathematical physics.
This volume is a collection of surveys of research problems in
topology and its applications. The topics covered include general
topology, set-theoretic topology, continuum theory, topological
algebra, dynamical systems, computational topology and functional
analysis.
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.
'Et moi, ..., si favait su comment eo reveoir. je One service mathematics has rendered the n'y serais point all6.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded nonsense'. Tbe series is divergent; therefore we may be EricT. Bell ajle to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari tL es abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science . .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.
The authors develop a theory of $THH$ and $TC$ of Waldhausen categories and prove the analogues of Waldhausen's theorems for $K$-theory. They resolve the longstanding confusion about localization sequences in $THH$ and $TC$, and establish a specialized devissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding $THH(ku)$, and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on $A(*)$.
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals in these areas who seek a complete, but gentle introduction to a wide range of techniques, concepts, and research horizons in the area of computational complexity in a broad sense.
Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors, both of whom have contributed significantly to the field, develop the classification theory for integrable systems with two degrees of freedom. This theory allows one to distinguish such systems up to two natural equivalence relations: the equivalence of the associated foliation into Liouville tori and the usual orbital equaivalence. The authors show that in both cases, one can find complete sets of invariants that give the solution of the classification problem. The first part of the book systematically presents the general construction of these invariants, including many examples and applications. In the second part, the authors apply the general methods of the classification theory to the classical integrable problems in rigid body dynamics and describe their topological portraits, bifurcations of Liouville tori, and local and global topological invariants. They show how the classification theory helps find hidden isomorphisms between integrable systems and present as an example their proof that two famous systems--the Euler case in rigid body dynamics and the Jacobi problem of geodesics on the ellipsoid--are orbitally equivalent. Integrable Hamiltonian Systems: Geometry, Topology, Classification offers a unique opportunity to explore important, previously unpublished results and acquire generally applicable techniques and tools that enable you to work with a broad class of integrable systems.
One of the ways in which topology has influenced other branches of
mathematics in the past few decades is by putting the study of
continuity and convergence into a general setting. This new edition
of Wilson Sutherland's classic text introduces metric and
topological spaces by describing some of that influence. The aim is
to move gradually from familiar real analysis to abstract
topological spaces, using metric spaces as a bridge between the
two. The language of metric and topological spaces is established
with continuity as the motivating concept. Several concepts are
introduced, first in metric spaces and then repeated for
topological spaces, to help convey familiarity. The discussion
develops to cover connectedness, compactness and completeness, a
trio widely used in the rest of mathematics.
In the early 1920s M. Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory which is now one of the basic parts of differential topology. Circle-valued Morse theory originated from a problem in hydrodynamics studied by S. P. Novikov in the early 1980s. Nowadays, it is a constantly growing field of contemporary mathematics with applications and connections to many geometrical problems such as Arnold's conjecture in the theory of Lagrangian intersections, fibrations of manifolds over the circle, dynamical zeta functions, and the theory of knots and links in the three-dimensional sphere. The aim of the book is to give a systematic treatment of geometric foundations of the subject and recent research results. The book is accessible to first year graduate students specializing in geometry and topology.
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic SchrAdinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff-James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel Lopez-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.
Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a comprehensive summary together with a global view, establishing both old and new links. Its treatment ranges from classical theorems of Menger and Schoenberg to recent developments such as approximation results for multicommodity flow and max-cut problems, metric aspects of Delaunay polytopes, isometric graph embeddings, and matrix completion problems. The discussion leads to many interesting subjects that cannot be found elsewhere, providing a unique and invaluable source for researchers and graduate students.
The D(2) problem is a fundamental problem in low dimensional topology. In broad terms, it asks when a three-dimensional space can be continuously deformed into a two-dimensional space without changing the essential algebraic properties of the spaces involved.The problem is parametrized by the fundamental group of the spaces involved; that is, each group G has its own D(2) problem whose difficulty varies considerably with the individual nature of G.This book solves the D(2) problem for a large, possibly infinite, number of finite metacyclic groups G(p, q). Prior to this the author had solved the D(2) problem for the groups G(p, 2). However, for q > 2, the only previously known solutions were for the groups G(7, 3), G(5, 4) and G(7, 6), all done by difficult direct calculation by two of the author's students, Jonathan Remez (2011) and Jason Vittis (2019).The method employed is heavily algebraic and involves precise analysis of the integral representation theory of G(p, q). Some noteworthy features are a new cancellation theory of modules (Chapters 10 and 11) and a simplified treatment (Chapters 5 and 12) of the author's theory of Swan homomorphisms.
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.
This volume covers many diverse topics related in varying degrees to mathematics in mind including the mathematical and topological structures of thought and communication. It examines mathematics in mind from the perspective of the spiral, cyclic and hyperlinked structures of the human mind in terms of its language, its thoughts and its various modes of communication in science, philosophy, literature and the arts including a chapter devoted to the spiral structure of the thought of Marshall McLuhan. In it, the authors examine the topological structures of hypertext, hyperlinking, and hypermedia made possible by the Internet and the hyperlinked structures that existed before its emergence. It also explores the cognitive origins of mathematical thinking of the human mind and its relation to the emergence of spoken language, and studies the emergence of mathematical notation and its impact on education. Topics addressed include: * The historical context of any topic that involves how mathematical thinking emerged, focusing on archaeological and philological evidence. * Connection between math cognition and symbolism, annotation and other semiotic processes. * Interrelationships between mathematical discovery and cultural processes, including technological systems that guide the thrust of cognitive and social evolution. * Whether mathematics is an innate faculty or forged in cultural-historical context * What, if any, structures are shared between mathematics and language
The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.
This book is a significant companion text to the existing literature on continuum theory. It opens with background information of continuum theory, so often missing from the preceding publications, and then explores the following topics: inverse limits, the Jones set function T, homogenous continua, and n-fold hyperspaces. In this new edition of the book, the author builds on the aforementioned topics, including the unprecedented presentation of n-fold hyperspace suspensions and induced maps on n-fold hyperspaces. The first edition of the book has had a remarkable impact on the continuum theory community. After twelve years, this updated version will also prove to be an excellent resource within the field of topology. |
![]() ![]() You may like...
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R998
Discovery Miles 9 980
Tobacco - Science, policy and public…
Peter Boyle, Nigel Gray, …
Hardcover
R4,443
Discovery Miles 44 430
Shaping Learners' Pronunciation…
James Dean Brown, Dustin Crowther
Paperback
R1,316
Discovery Miles 13 160
Developing Language Teachers with…
Kenan Dikilitas, Judith Hanks
Hardcover
R3,869
Discovery Miles 38 690
|