0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (9)
  • R250 - R500 (49)
  • R500+ (1,950)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Topology

Formal Matrices (Hardcover, 1st ed. 2017): Piotr Krylov, Askar Tuganbaev Formal Matrices (Hardcover, 1st ed. 2017)
Piotr Krylov, Askar Tuganbaev
R2,771 Discovery Miles 27 710 Ships in 10 - 15 working days

This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a solid understanding of basic algebra.

Dynamical Systems, Ergodic Theory and Applications (Hardcover, 2nd exp. and rev. ed. 2000): L.A. Bunimovich Dynamical Systems, Ergodic Theory and Applications (Hardcover, 2nd exp. and rev. ed. 2000)
L.A. Bunimovich; Edited by Ya.G. Sinai; S. G. Dani, R.L. Dobrushin, M.V. Jakobson, …
R4,264 Discovery Miles 42 640 Ships in 18 - 22 working days

This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. The ergodic theory of smooth dynamical systems is treated. Numerous examples are presented carefully along with the ideas underlying the most important results. Moreover, the book deals with the dynamical systems of statistical mechanics, and with various kinetic equations. For this second enlarged and revised edition, published as Mathematical Physics I, EMS 100, two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations were added. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.

Math and Art - An Introduction to Visual Mathematics (Paperback, 2nd edition): Sasho Kalajdzievski Math and Art - An Introduction to Visual Mathematics (Paperback, 2nd edition)
Sasho Kalajdzievski
R1,885 Discovery Miles 18 850 Ships in 9 - 17 working days

Features Provides an accessible introduction to mathematics in art Supports the narrative with a self-contained mathematical theory, with complete proofs of the main results (including the classification theorem for similarities) Presents hundreds of figures, illustrations, computer-generated graphics, designs, photographs, and art reproductions, mainly presented in full color Includes 21 projects and about 280 exercises, about half of which are fully solved Covers Euclidean geometry, golden section, Fibonacci numbers, symmetries, tilings, similarities, fractals, cellular automata, inversion, hyperbolic geometry, perspective drawing, Platonic and Archimedean solids, and topology New to the Second Edition New exercises, projects and artworks Revised, reorganised and expanded chapters More use of color throughout

Topological and Algebraic Structures in Fuzzy Sets - A Handbook of Recent Developments in the Mathematics of Fuzzy Sets... Topological and Algebraic Structures in Fuzzy Sets - A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (Hardcover, 2003 ed.)
S. E. Rodabaugh, Erich Peter Klement
R4,270 Discovery Miles 42 700 Ships in 18 - 22 working days

This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook," namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas."

Image Processing with Cellular Topology (Hardcover, 1st ed. 2021): Vladimir Kovalevsky Image Processing with Cellular Topology (Hardcover, 1st ed. 2021)
Vladimir Kovalevsky
R3,662 Discovery Miles 36 620 Ships in 10 - 15 working days

This book explains why the finite topological space known as abstract cell complex is important for successful image processing and presents image processing methods based on abstract cell complex, especially for tracing and encoding of boundaries of homogeneous regions. Many examples are provided in the book, some teach you how to trace and encode boundaries in binary, indexed and colour images. Other examples explain how to encode a boundary as a sequence of straight-line segments which is important for shape recognition. A new method of edge detection in two- and three-dimensional images is suggested. Also, a discussion problem is included in the book: A derivative is defined as the limit of the relation of the increment of the function to the increment of the argument as the latter tends to zero. Is it not better to estimate derivatives as the relation of the increment of the function to the optimal increment of the argument instead of taking exceedingly small increment which leads to errors? This book addresses all above questions and provide the answers.

Crossed Modules (Hardcover): Friedrich Wagemann Crossed Modules (Hardcover)
Friedrich Wagemann
R4,801 Discovery Miles 48 010 Ships in 10 - 15 working days

This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.

Galois Covers, Grothendieck-Teichmuller Theory and Dessins d'Enfants - Interactions between Geometry, Topology, Number... Galois Covers, Grothendieck-Teichmuller Theory and Dessins d'Enfants - Interactions between Geometry, Topology, Number Theory and Algebra, Leicester, UK, June 2018 (Hardcover, 1st ed. 2020)
Frank Neumann, Sibylle Schroll
R4,254 Discovery Miles 42 540 Ships in 18 - 22 working days

This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.

Map of the World - An Introduction to Mathematical Geodesy (Paperback): Martin Vermeer, Antti Rasila Map of the World - An Introduction to Mathematical Geodesy (Paperback)
Martin Vermeer, Antti Rasila
R1,310 Discovery Miles 13 100 Ships in 9 - 17 working days

* Written in a fluid and accessible style, replete with exercises; ideal for undergraduate courses * Suitable for students of land surveying and natural science, as well as professionals, but also for map amateurs

New Foundations for Physical Geometry - The Theory of Linear Structures (Hardcover): Tim Maudlin New Foundations for Physical Geometry - The Theory of Linear Structures (Hardcover)
Tim Maudlin
R3,308 Discovery Miles 33 080 Ships in 10 - 15 working days

Topology is the mathematical study of the most basic geometrical structure of a space. Mathematical physics uses topological spaces as the formal means for describing physical space and time. This book proposes a completely new mathematical structure for describing geometrical notions such as continuity, connectedness, boundaries of sets, and so on, in order to provide a better mathematical tool for understanding space-time. This is the initial volume in a two-volume set, the first of which develops the mathematical structure and the second of which applies it to classical and Relativistic physics. The book begins with a brief historical review of the development of mathematics as it relates to geometry, and an overview of standard topology. The new theory, the Theory of Linear Structures, is presented and compared to standard topology. The Theory of Linear Structures replaces the foundational notion of standard topology, the open set, with the notion of a continuous line. Axioms for the Theory of Linear Structures are laid down, and definitions of other geometrical notions developed in those terms. Various novel geometrical properties, such as a space being intrinsically directed, are defined using these resources. Applications of the theory to discrete spaces (where the standard theory of open sets gets little purchase) are particularly noted. The mathematics is developed up through homotopy theory and compactness, along with ways to represent both affine (straight line) and metrical structure.

Differential Geometrical Methods in Theoretical Physics (Hardcover, 1988 ed.): K. Bleuler, M. Werner Differential Geometrical Methods in Theoretical Physics (Hardcover, 1988 ed.)
K. Bleuler, M. Werner
R5,409 Discovery Miles 54 090 Ships in 18 - 22 working days

After almost half a century of existence the main question about quantum field theory seems still to be: what does it really describe? and not yet: does it provide a good description of nature? J. A. Swieca Ever since quantum field theory has been applied to strong int- actions, physicists have tried to obtain a nonperturbative und- standing. Dispersion theoretic sum rules, the S-matrix bootstrap, the dual models (and their reformulation in string language) and s the conformal bootstrap of the 70 are prominent cornerstones on this thorny path. Furthermore instantons and topological solitons have shed some light on the nonperturbati ve vacuum structure respectively on the existence of nonperturbative "charge" s- tors. To these attempts an additional one was recently added', which is yet not easily describable in terms of one "catch phrase". Dif- rent from previous attempts, it is almost entirely based on new noncommutative algebraic structures: "exchange algebras" whose "structure constants" are braid matrices which generate a ho- morphism of the infini te (inducti ve limi t) Artin braid group Boo into a von Neumann algebra. Mathematically there is a close 2 relation to recent work of Jones * Its physical origin is the resul t of a subtle analysis of Ei nstein causality expressed in terms of local commutati vi ty of space-li ke separated fields. It is most clearly recognizable in conformal invariant quantum field theories.

Intuitive Combinatorial Topology (Hardcover): J. Stillwell Intuitive Combinatorial Topology (Hardcover)
J. Stillwell; Translated by A. Shenitzer; V.G. Boltyanskii, V.A. Efremovich
R1,516 Discovery Miles 15 160 Ships in 18 - 22 working days

Topology is a relatively young and very important branch of mathematics. It studies properties of objects that are preserved by deformations, twistings, and stretchings, but not tearing. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. There is hardly an area of mathematics that does not make use of topological results and concepts. The importance of topological methods for different areas of physics is also beyond doubt. They are used in field theory and general relativity, in the physics of low temperatures, and in modern quantum theory. The book is well suited not only as preparation for students who plan to take a course in algebraic topology but also for advanced undergraduates or beginning graduates interested in finding out what topology is all about. The book has more than 200 problems, many examples, and over 200 illustrations.

Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.): Alexander Reznikov, Norbert Schappacher Regulators in Analysis, Geometry and Number Theory (Hardcover, 2000 ed.)
Alexander Reznikov, Norbert Schappacher
R1,450 Discovery Miles 14 500 Ships in 18 - 22 working days

This book is an outgrowth of the Workshop on "Regulators in Analysis, Geom etry and Number Theory" held at the Edmund Landau Center for Research in Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During the preparation and the holding of the workshop we were greatly helped by the director of the Landau Center: Lior Tsafriri during the time of the planning of the conference, and Hershel Farkas during the meeting itself. Organizing and running this workshop was a true pleasure, thanks to the expert technical help provided by the Landau Center in general, and by its secretary Simcha Kojman in particular. We would like to express our hearty thanks to all of them. However, the articles assembled in the present volume do not represent the proceedings of this workshop; neither could all contributors to the book make it to the meeting, nor do the contributions herein necessarily reflect talks given in Jerusalem. In the introduction, we outline our view of the theory to which this volume intends to contribute. The crucial objective of the present volume is to bring together concepts, methods, and results from analysis, differential as well as algebraic geometry, and number theory in order to work towards a deeper and more comprehensive understanding of regulators and secondary invariants. Our thanks go to all the participants of the workshop and authors of this volume. May the readers of this book enjoy and profit from the combination of mathematical ideas here documented.

Noncommutative Geometry - A Functorial Approach (Hardcover, This is the revised second edition.): Igor V Nikolaev Noncommutative Geometry - A Functorial Approach (Hardcover, This is the revised second edition.)
Igor V Nikolaev
R4,009 Discovery Miles 40 090 Ships in 10 - 15 working days

Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.

General Topology (Hardcover, 1st ed. 1955. 2nd printing 1975): John L. Kelley General Topology (Hardcover, 1st ed. 1955. 2nd printing 1975)
John L. Kelley
R2,592 Discovery Miles 25 920 Ships in 18 - 22 working days

This classic book is a systematic exposition of general topology. It is especially intended as background for modern analysis. Based on lectures given at the University of Chicago, the University of California and Tulane University, this book is intended to be a reference and a text. As a reference work, it offers a reasonably complete coverage of the area, and this has resulted in a more extended treatment than would normally be given in a course. As a text, however, the exposition in the eariler chapters proceeds at a more pedestrian pace. A preliminary chapter covers those topics requisite to the main body of work.

Encyclopedia of Knot Theory (Paperback): Colin Adams, Erica Flapan, Allison Henrich, Louis H. Kauffman, Lewis D. Ludwig, Sam... Encyclopedia of Knot Theory (Paperback)
Colin Adams, Erica Flapan, Allison Henrich, Louis H. Kauffman, Lewis D. Ludwig, …
R1,592 Discovery Miles 15 920 Ships in 9 - 17 working days

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory

Handbook of Geometry and Topology of Singularities III (Hardcover, 1st ed. 2022): Jose Luis Cisneros-Molina, Le Dung Trang,... Handbook of Geometry and Topology of Singularities III (Hardcover, 1st ed. 2022)
Jose Luis Cisneros-Molina, Le Dung Trang, Jose Seade
R6,633 Discovery Miles 66 330 Ships in 10 - 15 working days

This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski's equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom-Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Normal Surface Singularities (Hardcover, 1st ed. 2022): Andras Nemethi Normal Surface Singularities (Hardcover, 1st ed. 2022)
Andras Nemethi
R817 Discovery Miles 8 170 Ships in 10 - 15 working days

This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recent topological one, combining their tools and methods. In the first chapters, the book sets out the foundations of the theory of normal surface singularities. This includes a comprehensive presentation of the properties of the link (as an oriented 3-manifold) and of the invariants associated with a resolution, combined with the structure and special properties of the line bundles defined on a resolution. A recurring theme is the comparison of analytic and topological invariants. For example, the Poincare series of the divisorial filtration is compared to a topological zeta function associated with the resolution graph, and the sheaf cohomologies of the line bundles are compared to the Seiberg-Witten invariants of the link. Equivariant Ehrhart theory is introduced to establish surgery-additivity formulae of these invariants, as well as for the regularization procedures of multivariable series. In addition to recent research, the book also provides expositions of more classical subjects such as the classification of plane and cuspidal curves, Milnor fibrations and smoothing invariants, the local divisor class group, and the Hilbert-Samuel function. It contains a large number of examples of key families of germs: rational, elliptic, weighted homogeneous, superisolated and splice-quotient. It provides concrete computations of the topological invariants of their links (Casson(-Walker) and Seiberg-Witten invariants, Turaev torsion) and of the analytic invariants (geometric genus, Hilbert function of the divisorial filtration, and the analytic semigroup associated with the resolution). The book culminates in a discussion of the topological and analytic lattice cohomologies (as categorifications of the Seiberg-Witten invariant and of the geometric genus respectively) and of the graded roots. Several open problems and conjectures are also formulated. Normal Surface Singularities provides researchers in algebraic and differential geometry, singularity theory, complex analysis, and low-dimensional topology with an invaluable reference on this rich topic, offering a unified presentation of the major results and approaches.

Lectures on the Geometry of Poisson Manifolds (Hardcover, 1994 ed.): Izu Vaisman Lectures on the Geometry of Poisson Manifolds (Hardcover, 1994 ed.)
Izu Vaisman
R2,993 Discovery Miles 29 930 Ships in 18 - 22 working days

This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

Cyclic Modules and the Structure of Rings (Hardcover): S.K. Jain, Ashish K. Srivastava, Askar A. Tuganbaev Cyclic Modules and the Structure of Rings (Hardcover)
S.K. Jain, Ashish K. Srivastava, Askar A. Tuganbaev
R4,420 Discovery Miles 44 200 Ships in 10 - 15 working days

This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.

Advances in Mathematical Sciences - AWM Research Symposium, Houston, TX, April 2019 (Hardcover, 1st ed. 2020): Bahar Acu,... Advances in Mathematical Sciences - AWM Research Symposium, Houston, TX, April 2019 (Hardcover, 1st ed. 2020)
Bahar Acu, Donatella Danielli, Marta Lewicka, Arati Pati, Saraswathy RV, …
R1,459 Discovery Miles 14 590 Ships in 18 - 22 working days

This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education

Integrability and Nonintegrability in Geometry and Mechanics (Hardcover, 1988 ed.): A.T. Fomenko Integrability and Nonintegrability in Geometry and Mechanics (Hardcover, 1988 ed.)
A.T. Fomenko
R2,846 Discovery Miles 28 460 Ships in 18 - 22 working days

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . * 1111 Oulik'. n. . Chi" *. * ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Separation in Point-Free Topology (Hardcover, 1st ed. 2021): Jorge Picado, Ales Pultr Separation in Point-Free Topology (Hardcover, 1st ed. 2021)
Jorge Picado, Ales Pultr
R3,363 Discovery Miles 33 630 Ships in 18 - 22 working days

This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.

Discrete Groups in Space and Uniformization Problems (Hardcover, Revised edition): B. Apanasov Discrete Groups in Space and Uniformization Problems (Hardcover, Revised edition)
B. Apanasov
R3,041 Discovery Miles 30 410 Ships in 18 - 22 working days

A revised and substantially enlarged edition of the Russian book Discrete transformation groups and manifold structures published by Nauka in 1983, this volume presents a comprehensive treatment of the geometric theory of discrete groups and the associated tessellations of the underlying space. Also

Differential Geometry - Bundles, Connections, Metrics and Curvature (Hardcover): Clifford Henry Taubes Differential Geometry - Bundles, Connections, Metrics and Curvature (Hardcover)
Clifford Henry Taubes
R3,913 Discovery Miles 39 130 Ships in 10 - 15 working days

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects.
Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kahler geometry.
Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.

Gauss Diagram Invariants for Knots and Links (Hardcover, 2001 ed.): T. Fiedler Gauss Diagram Invariants for Knots and Links (Hardcover, 2001 ed.)
T. Fiedler
R2,884 Discovery Miles 28 840 Ships in 18 - 22 working days

Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of global knots. We prove that T-invariants separate all global knots of a certain type. 3 As a corollary we prove that certain links in 5 are not invertible without making any use of the link group! Introduction and announcement This work is an introduction into the world of Gauss diagram invariants.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Connections, Definite Forms, and…
Ted Petrie, John Randall Hardcover R2,647 Discovery Miles 26 470
Topology Illustrated
Peter Saveliev Hardcover R2,134 R1,816 Discovery Miles 18 160
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon Hardcover R3,614 Discovery Miles 36 140
Topology and Geometric Group Theory…
Michael W. Davis, James Fowler, … Hardcover R3,812 R3,281 Discovery Miles 32 810
Topology Through Inquiry
Michael Starbird, Francis Su Paperback R2,188 Discovery Miles 21 880
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, … Hardcover R2,791 R2,019 Discovery Miles 20 190
Universal Spaces and Mappings, Volume…
S.D. Iliadis Hardcover R4,882 Discovery Miles 48 820
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, … Hardcover R1,162 Discovery Miles 11 620
Differential Topology and Quantum Field…
Charles Nash Paperback R1,358 Discovery Miles 13 580
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster Hardcover R2,143 Discovery Miles 21 430

 

Partners