Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology
The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability."
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Geodesic flows of Riemannian metrics on manifolds are one of the classical objects in geometry. A particular place among them is occupied by integrable geodesic flows. We consider them in the context of the general theory of integrable Hamiltonian systems, and in particular, from the viewpoint of a new topological classification theory, which was recently developed for integrable Hamiltonian systems with two degrees of freedom. As a result, we will see that such a new approach is very useful for a deeper understanding of the topology and geometry of integrable geodesic flows. The main object to be studied in our paper is the class of integrable geodesic flows on two-dimensional surfaces. There are many such flows on surfaces of small genus, in particular, on the sphere and torus. On the contrary, on surfaces of genus 9 > 1, no such flows exist in the analytical case. One of the most important and interesting problems consists in the classification of integrable flows up to different equivalence relations such as (1) an isometry, (2) the Liouville equivalence, (3) the trajectory equivalence (smooth and continuous), and (4) the geodesic equivalence. In recent years, a new technique was developed, which gives, in particular, a possibility to classify integrable geodesic flows up to these kinds of equivalences. This technique is presented in our paper, together with various applications. The first part of our book, namely, Chaps.
This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional expertise of the members of the study group, but also give a lively impression of students learning processes. In addition the reports show that elementary knot theory is not just a preparation for advanced knot theory but also an excellent means to develop spatial thinking. The book can be highly recommended for several reasons: First of all, and that is the main intention of the book, it serves as a comprehensive text for teaching and learning knot theory. Moreover it provides a model for cooperation between mathematicians and mathematics educators based on substantial mathematics. And finally it is a thorough introduction to the Japanese art of lesson studies again in the context of substantial mathematics.
Two prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have been placed, they will, however, be allowed to have a strategy session before being brought to the room. Is there a strategy ensuring their release? The answer turns out to be yes, and this is the simplest non-trivial example of a hat problem. This book deals with the question of how successfully one can predict the value of an arbitrary function at one or more points of its domain based on some knowledge of its values at other points. Topics range from hat problems that are accessible to everyone willing to think hard, to some advanced topics in set theory and infinitary combinatorics. For example, there is a method of predicting the value "f"("a") of a function f mapping the reals to the reals, based only on knowledge of "f"'s values on the open interval ("a" 1, "a"), and for every such function the prediction is incorrect only on a countable set that is nowhere dense. The monograph progresses from topics requiring fewer prerequisites to those requiring more, with most of the text being accessible to any graduate student in mathematics. The broad range of readership includes researchers, postdocs, and graduate students in the fields of set theory, mathematical logic, and combinatorics. The hope is that this book will bring together mathematicians from different areas to think about set theory via a very broad array of coordinated inference problems. "
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me chanics, and infinite-dimensional differential geometry of groups of diffeomor phisms and hydrodynamics. The unification of these topics under the cover of one book appears, however, quite natural, since the exposition is based on a geometrically invariant form of the Newton equation and its analogs taken as a fundamental law of motion."
Basic Real Analysis and Advanced Real Analysis systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established. These works present a comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics.Basic Real Analysis requires of the reader only familiarity with some linear algebra and real variable theory, the very beginning of group theory, and an acquaintance with proofs. It is suitable as a text in an advanced undergraduate course in real variable theory and in most basic graduate courses in Lebesgue integration and related topics. Because it focuses on what every young mathematician needs to know about real analysis, the book is ideal both as a course text and for self-study, especially for graduate students preparing for qualifying examinations. Its scope and unique approach will appeal to instructors and professors in nearly all areas of pure mathematics, as well as applied mathematicians working in analytic areas such as statistics, mathematical physics, and differential equations. addition to the personal library of every mathematician.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
The algebra of primary cohomology operations computed by the well-known Steenrod algebra is one of the most powerful tools of algebraic topology. This book computes the algebra of secondary cohomology operations which enriches the structure of the Steenrod algebra in a new and unexpected way. The book solves a long-standing problem on the algebra of secondary cohomology operations by developing a new algebraic theory of such operations. The results have strong impact on the Adams spectral sequence and hence on the computation of homotopy groups of spheres.
As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition's theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections. "
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.
This work presents some classical as well as some very recent results and techniques concerning the spectral geometry corresponding to the Laplace-Beltrami operator and the Hodge-de Rham operators. It treats many topics that are not usually dealt with in this field, such as the continuous dependence of the eigenvalues with respect to the Riemannian metric in the CINFINITY-topology, and some of their consequences, such as Uhlenbeck's genericity theorem; examples of non-isometric flat tori in all dimensions greater than or equal to four; Gordon's classical technique for constructing isospectral closed Riemannian manifolds; a detailed presentation of Sunada's technique and Pesce's approach to isospectrality; Gordon and Webb's example of non-isometric convex domains in Rn (n>=4) that are isospectral for both Dirichlet and Neumann boundary conditions; the Chanillo-TrA]ves estimate for the first positive eigenvalue of the Hodge-de Rham operator, etc. Significant applications are developed, and many open problems, references and suggestions for further reading are given. Several themes for additional research are pointed out. Audience: This volume is designed as an introductory text for mathematicians and physicists interested in global analysis, analysis on manifolds, differential geometry, linear and multilinear algebra, and matrix theory. It is accessible to readers whose background includes basic Riemannian geometry and functional analysis. These mathematical prerequisites are covered in the first two chapters, thus making the book largely self-contained.
Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in short introduction on obstruction theory. The text is more in tune with the original development of algebraic topology as given by Henry Poincare (singular homology is discussed). Illustrative examples throughout and extensive exercises at the end of each chapter for practice enhance the text. Advanced undergraduate and beginning graduate students will benefit from this book. Researchers and professionals interested in topology and applications of mathematics will also find this book useful.
William S. Massey Professor Massey, born in Illinois in 1920, received his bachelor's degree from the University of Chicago and then served for four years in the U.S. Navy during World War II. After the War he received his Ph.D. from Princeton University and spent two additional years there as a post-doctoral research assistant. He then taught for ten years on the faculty of Brown University, and moved to his present position at Yale in 1960. He is the author of numerous research articles on algebraic topology and related topics. This book developed from lecture notes of courses taught to Yale undergraduate and graduate students over a period of several years.
In a broad sense design science is the grammar of a language of images rather than of words. Modem communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. Inter national traffic signs use international image symbols which are not An image language differs specific to any particular verbal language. from a verbal one in that the latter uses a linear string of symbols, whereas the former is multidimensional. Architectural renderings commonly show projections onto three mutually perpendicular planes, or consist of cross sections at different altitudes capable of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings compris ing ramps and other features which disguise the separation between and consequently limit the creative process of the architect. floors, Analogously, we tend to analyze natural structures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures."
The aim of the present monograph is a thorough study of the adic-completion, its left derived functors and their relations to the local cohomology functors, as well as several completeness criteria, related questions and various dualities formulas. A basic construction is the Cech complex with respect to a system of elements and its free resolution. The study of its homology and cohomology will play a crucial role in order to understand left derived functors of completion and right derived functors of torsion. This is useful for the extension and refinement of results known for modules to unbounded complexes in the more general setting of not necessarily Noetherian rings. The book is divided into three parts. The first one is devoted to modules, where the adic-completion functor is presented in full details with generalizations of some previous completeness criteria for modules. Part II is devoted to the study of complexes. Part III is mainly concerned with duality, starting with those between completion and torsion and leading to new aspects of various dualizing complexes. The Appendix covers various additional and complementary aspects of the previous investigations and also provides examples showing the necessity of the assumptions. The book is directed to readers interested in recent progress in Homological and Commutative Algebra. Necessary prerequisites include some knowledge of Commutative Algebra and a familiarity with basic Homological Algebra. The book could be used as base for seminars with graduate students interested in Homological Algebra with a view towards recent research.
This is a monograph on fixed point theory, covering the purely metric aspects of the theory-particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler's well known set-valued extension of that theorem, the extension of Banach's theorem to nonexpansive mappings, and Caristi's theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi's theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.
The purpose of this book is to introduce algebraic topology using the novel approach of homotopy theory, an approach with clear applications in algebraic geometry as understood by Lawson and Voevodsky. This method allows the authors to cover the material more efficiently than the more common method using homological algebra. The basic concepts of homotopy theory, such as fibrations and cofibrations, are used to construct singular homology and cohomology, as well as K-theory. Throughout the text many other fundamental concepts are introduced, including the construction of the characteristic classes of vector bundles. Although functors appear constantly throughout the text, no knowledge about category theory is expected from the reader. This book is intended for advanced undergraduates and graduate students with a basic knowledge of point set topology as well as group theory and can be used in a two semester course. Marcelo Aguilar and Carlos Prieto are Professors at the Instituto de Matemticas, Universidad Nacional Autonoma de Mexico, and Samuel Gitler is a member of El Colegio Nacional and professor at the Centro de Investigacion y Estudios Avanzados del IPN.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown'The point of a Pin'. van Gulik's TheChinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging SUbdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant 's fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant 's work. |
You may like...
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,146
Discovery Miles 31 460
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,399
Discovery Miles 23 990
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, …
Hardcover
R2,396
Discovery Miles 23 960
|