![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
Rudyak 's groundbreaking monograph is the first guide on the subject of cobordism since Stong's influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories). These are all framed by (co)homology theories and spectra. The author has also performed a service to the history of science in this book, giving detailed attributions.
This book should be accessible to students who have had a first course in matrix theory. The existence and uniqueness theorem of Chapter 4 requires the implicit function theorem, but we give a self-contained constructive proof ofthat theorem. The reader willing to accept the implicit function theorem can read the book without an advanced calculus background. Chapter 8 uses the Moore-Penrose pseudo-inverse, but is accessible to students who have facility with matrices. Exercises are placed at those points in the text where they are relevant. For U. S. universities, we intend for the book to be used at the senior undergraduate level or beginning graduate level. Chapter 2, which is on continued fractions, is not essential to the material of the remaining chapters, but is intimately related to the remaining material. Continued fractions provide closed form representations of the extreme solutions of some discrete matrix Riccati equations. Continued fractions solution methods for Riccati difference equations provide an approach analogous to series solution methods for linear differential equations. The book develops several topics which have not been available at this level. In particular, the material of the chapters on continued fractions (Chapter 2), symplectic systems (Chapter 3), and discrete variational theory (Chapter 4) summarize recent literature. Similarly, the material on transforming Riccati equations presented in Chapter 3 gives a self-contained unification of various forms of Riccati equations. Motivation for our approach to difference equations came from the work of Harris, Vaughan, Hartman, Reid, Patula, Hooker, Erbe & Van, and Bohner.
One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself."
Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc."
One service mathematics has rendered the human race. It has put common sense back where it belongs. It has put common sense back where it belongs, on the topmost shelf next to the dusty canister labelled discarded nonsense. Eric TBell Every picture tells a story. Advenisement for for Sloan's backache and kidney oils, 1907 The book you have in your hands as you are reading this, is a text on3-dimensional topology. It can serve as a pretty comprehensive text book on the subject. On the other hand, it frequently gets to the frontiers of current research in the topic. If pressed, I would initially classify it as a monograph, but, thanks to the over three hundred illustrations of the geometrical ideas involved, as a rather accessible one, and hence suitable for advanced classes. The style is somewhat informal; more or less like orally presented lectures, and the illustrations more than make up for all the visual aids and handwaving one has at one's command during an actual presentation.
Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." Bulletin of the L.M.S.
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
This book provides a comprehensive exposition of the theory of braids, beginning with the basic mathematical definitions and structures. Among the many topics explained in detail are: the braid group for various surfaces; the solution of the word problem for the braid group; braids in the context of knots and links (Alexander's theorem); Markov's theorem and its use in obtaining braid invariants; the connection between the Platonic solids (regular polyhedra) and braids; the use of braids in the solution of algebraic equations. Dirac's problem and special types of braids termed Mexican plaits are also discussed. Audience: Since the book relies on concepts and techniques from algebra and topology, the authors also provide a couple of appendices that cover the necessary material from these two branches of mathematics. Hence, the book is accessible not only to mathematicians but also to anybody who might have an interest in the theory of braids. In particular, as more and more applications of braid theory are found outside the realm of mathematics, this book is ideal for any physicist, chemist or biologist who would like to understand the mathematics of braids. With its use of numerous figures to explain clearly the mathematics, and exercises to solidify the understanding, this book may also be used as a textbook for a course on knots and braids, or as a supplementary textbook for a course on topology or algebra.
The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability."
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Geodesic flows of Riemannian metrics on manifolds are one of the classical objects in geometry. A particular place among them is occupied by integrable geodesic flows. We consider them in the context of the general theory of integrable Hamiltonian systems, and in particular, from the viewpoint of a new topological classification theory, which was recently developed for integrable Hamiltonian systems with two degrees of freedom. As a result, we will see that such a new approach is very useful for a deeper understanding of the topology and geometry of integrable geodesic flows. The main object to be studied in our paper is the class of integrable geodesic flows on two-dimensional surfaces. There are many such flows on surfaces of small genus, in particular, on the sphere and torus. On the contrary, on surfaces of genus 9 > 1, no such flows exist in the analytical case. One of the most important and interesting problems consists in the classification of integrable flows up to different equivalence relations such as (1) an isometry, (2) the Liouville equivalence, (3) the trajectory equivalence (smooth and continuous), and (4) the geodesic equivalence. In recent years, a new technique was developed, which gives, in particular, a possibility to classify integrable geodesic flows up to these kinds of equivalences. This technique is presented in our paper, together with various applications. The first part of our book, namely, Chaps.
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional expertise of the members of the study group, but also give a lively impression of students learning processes. In addition the reports show that elementary knot theory is not just a preparation for advanced knot theory but also an excellent means to develop spatial thinking. The book can be highly recommended for several reasons: First of all, and that is the main intention of the book, it serves as a comprehensive text for teaching and learning knot theory. Moreover it provides a model for cooperation between mathematicians and mathematics educators based on substantial mathematics. And finally it is a thorough introduction to the Japanese art of lesson studies again in the context of substantial mathematics.
The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me chanics, and infinite-dimensional differential geometry of groups of diffeomor phisms and hydrodynamics. The unification of these topics under the cover of one book appears, however, quite natural, since the exposition is based on a geometrically invariant form of the Newton equation and its analogs taken as a fundamental law of motion."
Two prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have been placed, they will, however, be allowed to have a strategy session before being brought to the room. Is there a strategy ensuring their release? The answer turns out to be yes, and this is the simplest non-trivial example of a hat problem. This book deals with the question of how successfully one can predict the value of an arbitrary function at one or more points of its domain based on some knowledge of its values at other points. Topics range from hat problems that are accessible to everyone willing to think hard, to some advanced topics in set theory and infinitary combinatorics. For example, there is a method of predicting the value "f"("a") of a function f mapping the reals to the reals, based only on knowledge of "f"'s values on the open interval ("a" 1, "a"), and for every such function the prediction is incorrect only on a countable set that is nowhere dense. The monograph progresses from topics requiring fewer prerequisites to those requiring more, with most of the text being accessible to any graduate student in mathematics. The broad range of readership includes researchers, postdocs, and graduate students in the fields of set theory, mathematical logic, and combinatorics. The hope is that this book will bring together mathematicians from different areas to think about set theory via a very broad array of coordinated inference problems. "
Basic Real Analysis and Advanced Real Analysis systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established. These works present a comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics.Basic Real Analysis requires of the reader only familiarity with some linear algebra and real variable theory, the very beginning of group theory, and an acquaintance with proofs. It is suitable as a text in an advanced undergraduate course in real variable theory and in most basic graduate courses in Lebesgue integration and related topics. Because it focuses on what every young mathematician needs to know about real analysis, the book is ideal both as a course text and for self-study, especially for graduate students preparing for qualifying examinations. Its scope and unique approach will appeal to instructors and professors in nearly all areas of pure mathematics, as well as applied mathematicians working in analytic areas such as statistics, mathematical physics, and differential equations. addition to the personal library of every mathematician.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
The algebra of primary cohomology operations computed by the well-known Steenrod algebra is one of the most powerful tools of algebraic topology. This book computes the algebra of secondary cohomology operations which enriches the structure of the Steenrod algebra in a new and unexpected way. The book solves a long-standing problem on the algebra of secondary cohomology operations by developing a new algebraic theory of such operations. The results have strong impact on the Adams spectral sequence and hence on the computation of homotopy groups of spheres. |
![]() ![]() You may like...
The Entomologist; v.24 (1891)
British Trust for Entomology, Royal Entomological Society Of London
Hardcover
R976
Discovery Miles 9 760
Experimental Evidence and Theoretical…
A. Tarantino, C. Mancuso
Hardcover
R2,825
Discovery Miles 28 250
Synopsis of the Families and Genera of…
Samuel W (Samuel Wendell) Williston
Hardcover
R796
Discovery Miles 7 960
Land Snails of Belize, Central America…
Daniel C Dourson, Ronald S Caldwell, …
Hardcover
R1,463
Discovery Miles 14 630
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|