![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s.The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
Visualization research aims to provide insight into large, complicated data sets and the phenomena behind them. While there are di?erent methods of reaching this goal, topological methods stand out for their solid mathem- ical foundation, which guides the algorithmic analysis and its presentation. Topology-based methods in visualization have been around since the beg- ning of visualization as a scienti?c discipline, but they initially played only a minor role. In recent years,interest in topology-basedvisualization has grown andsigni?cantinnovationhasledto newconceptsandsuccessfulapplications. The latest trends adapt basic topological concepts to precisely express user interests in topological properties of the data. This book is the outcome of the second workshop on Topological Methods in Visualization, which was held March 4-6, 2007 in Kloster Nimbschen near Leipzig,Germany.Theworkshopbroughttogethermorethan40international researchers to present and discuss the state of the art and new trends in the ?eld of topology-based visualization. Two inspiring invited talks by George Haller, MIT, and Nelson Max, LLNL, were accompanied by 14 presentations by participants and two panel discussions on current and future trends in visualization research. This book contains thirteen research papers that have been peer-reviewed in a two-stage review process. In the ?rst phase, submitted papers where peer-reviewed by the international program committee. After the workshop accepted papers went through a revision and a second review process taking into account comments from the ?rst round and discussions at the workshop. Abouthalfthepapersconcerntopology-basedanalysisandvisualizationof ?uid?owsimulations;twopapersconcernmoregeneraltopologicalalgorithms, while the remaining papers discuss topology-based visualization methods in application areas like biology, medical imaging and electromagnetism.
The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.
The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained--no background in complex numbers is assumed--and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.
Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth-century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
This volume covers many diverse topics related in varying degrees to mathematics in mind including the mathematical and topological structures of thought and communication. It examines mathematics in mind from the perspective of the spiral, cyclic and hyperlinked structures of the human mind in terms of its language, its thoughts and its various modes of communication in science, philosophy, literature and the arts including a chapter devoted to the spiral structure of the thought of Marshall McLuhan. In it, the authors examine the topological structures of hypertext, hyperlinking, and hypermedia made possible by the Internet and the hyperlinked structures that existed before its emergence. It also explores the cognitive origins of mathematical thinking of the human mind and its relation to the emergence of spoken language, and studies the emergence of mathematical notation and its impact on education. Topics addressed include: * The historical context of any topic that involves how mathematical thinking emerged, focusing on archaeological and philological evidence. * Connection between math cognition and symbolism, annotation and other semiotic processes. * Interrelationships between mathematical discovery and cultural processes, including technological systems that guide the thrust of cognitive and social evolution. * Whether mathematics is an innate faculty or forged in cultural-historical context * What, if any, structures are shared between mathematics and language
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.
One service mathematics has rendered the 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.
The aim of this book is to give necessary and sufficient conditions for a C oo map to be C 0-stable; the aim is achieved in a wide range of dimensions via a detailed study of the geometry and topology of many classes of "generic" singularities. The methods developed for examining the topology and geometry use results from many areas of mathematics - geometric topology, stratification theory, algebraic topology, algebraic geometry, commutative algebra...- and further progress will doubtless be made from the application of deeper results from these areas. Conversely, it is to be hoped that the description of the behaviour of generic singularities will also have interesting consequences for these areas of mathematics, which are those with most interaction with singularity theory. The book describes original research; essentially none of its results has previously appeared elsewhere, either in scientific articles or in books. This book is intended for research mathematicians in singularity theory and in selected areas of geometric topology, stratification theory, algebraic geometry, commutative algebra.
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices.
This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are at the heart of these spaces and phenomena. The volume gives a closer look at the scope and the nature of diagrams as constituents of mathematical and physical thought, their function in contemporary artistic work, and appraise, in particular, the actual importance of the diagrams of knots, of braids, of fields, of interaction, of strings in topology and geometry, in quantum physics and in cosmology, but also in theory of perception, in plastic arts and in philosophy. The editors carefully curated this volume to be an inspiration to students and researchers in philosophy, phenomenology, mathematics and the sciences, as well as artists, musicians and the general interested audience.
Topology is a large subject with several branches, broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad range of mathematical disciplines, while algebraic topology offers as a powerful tool for studying problems in geometry and numerous other areas of mathematics. This book presents the basic concepts of topology, including virtually all of the traditional topics in point-set topology, as well as elementary topics in algebraic topology such as fundamental groups and covering spaces. It also discusses topological groups and transformation groups. When combined with a working knowledge of analysis and algebra, this book offers a valuable resource for advanced undergraduate and beginning graduate students of mathematics specializing in algebraic topology and harmonic analysis.
The authors develop a theory of $THH$ and $TC$ of Waldhausen categories and prove the analogues of Waldhausen's theorems for $K$-theory. They resolve the longstanding confusion about localization sequences in $THH$ and $TC$, and establish a specialized devissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding $THH(ku)$, and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on $A(*)$.
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.
The featured review of the AMS describes the author s earlier work in the field of approach spaces as, A landmark in the history of general topology . In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. "Index Analysis" will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science."
In the mid-1980's, Abhay Ashtekar discovered a reformulation of general relativity in terms of what are now called the "new variables". This led to a rapid series of developments, and in 1990 Carlo Rovelli and Lee Smolin published a paper entitled "Loop representation of quantum general relativity", in which, among other things, it was shown that there is a space of solutions to the constraint equations of quantum gravity consisting of link invariants. The discovery of relations between quantum gravity and the theory of knots and links came as quite a surprise, since the topics had been regarded as quite remote from each other. This volume is the proceedings of a workshop held in 1993 at the University of California at Riverside. The purpose of the workshop was to bring together researchers in knot theory and quantum gravity and form more bridges between the two subjects. Most of the talks were given by researchers whose work has significance for both subjects. This volume contains expository papers as well as new results, and should serve as a guide for mathematicians and physicists seeking to understand this rapidly developing area of research.
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.
People have been interested in knots at least since the time of Alexander the Great and his encounter with the Gordian knot. There are famous knot illustrations in the Book of Kells and throughout traditional Islamic art. Lord Kelvin believed that atoms were knots in the ether and he encouraged Tait to compile a talbe of knots about 100 years ago. In recent years, the Jones polynomial has stimulated much interest in possible relationships between knot theory and physics. The book is concerned with the fundamental question of the classification of knots, and more generally the classification of arbitrary (compact) topological objects which can occur in our normal space of physical reality. Professor Hemion explains his classification algorithm - using the method of normal surfaces - in a simple and concise way. The reader is thus shown the relevance of such traditional mathematical objects as the Klein bottle or the hyperbolic plane to this basic classification theory. The Classification of Knots and 3-dimensional Spaces will be of interest to mathematicians, physicists, and other scientists who want to apply this basic classification algorithm to their research in knot theory. |
You may like...
Logic Functions and Equations…
Bernd Steinbach, Christian Posthoff
Hardcover
R2,885
Discovery Miles 28 850
Contact Force Models for Multibody…
Paulo Flores, Hamid M. Lankarani
Hardcover
Vibrations and Stability of Complex Beam…
Vladimir Stojanovic, Predrag Kozic
Hardcover
|