![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
"Distributed Computing Through Combinatorial Topology" describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of
scattered conference publications, which are typically terse and
commonly use different notations and terminologies. This book
provides a self-contained explanation of the mathematics to readers
with computer science backgrounds, as well as explaining computer
science concepts to readers with backgrounds in applied
mathematics. The first section presents mathematical notions and
models, including message passing and shared-memory systems,
failures, and timing models. The next section presents core
concepts in two chapters each: first, proving a simple result that
lends itself to examples and pictures that will build up readers'
intuition; then generalizing the concept to prove a more
sophisticated result. The overall result weaves together and
develops the basic concepts of the field, presenting them in a
gradual and intuitively appealing way. The book's final section
discusses advanced topics typically found in a graduate-level
course for those who wish to explore further.
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA."
The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.
This second volume of Research in Computational Topology is a celebration and promotion of research by women in applied and computational topology, containing the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations and research specializations to interact extensively and collectively contribute to new and active research directions in the field. The prestigious senior researchers that signed on to head projects at the workshop are global leaders in the discipline, and two of them were authors on some of the first papers in the field. Some of the featured topics include topological data analysis of power law structure in neural data; a nerve theorem for directional graph covers; topological or homotopical invariants for directed graphs encoding connections among a network of neurons; and the issue of approximation of objects by digital grids, including precise relations between the persistent homology of dual cubical complexes.
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.
The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where $K$ is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to $-\chi(M)$, where $\chi(M)$ is the Euler characteristic of the ambient manifold $M$.
The D(2) problem is a fundamental problem in low dimensional topology. In broad terms, it asks when a three-dimensional space can be continuously deformed into a two-dimensional space without changing the essential algebraic properties of the spaces involved.The problem is parametrized by the fundamental group of the spaces involved; that is, each group G has its own D(2) problem whose difficulty varies considerably with the individual nature of G.This book solves the D(2) problem for a large, possibly infinite, number of finite metacyclic groups G(p, q). Prior to this the author had solved the D(2) problem for the groups G(p, 2). However, for q > 2, the only previously known solutions were for the groups G(7, 3), G(5, 4) and G(7, 6), all done by difficult direct calculation by two of the author's students, Jonathan Remez (2011) and Jason Vittis (2019).The method employed is heavily algebraic and involves precise analysis of the integral representation theory of G(p, q). Some noteworthy features are a new cancellation theory of modules (Chapters 10 and 11) and a simplified treatment (Chapters 5 and 12) of the author's theory of Swan homomorphisms.
Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.
Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Ito calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.
Focuses on the latest research in Graph Theory Provides recent research findings that are occurring in this field Discusses the advanced developments and gives insights on an international and transnational level Identifies the gaps in the results Presents forthcoming international studies and researches, long with applications in Networking, Computer Science, Chemistry, Biological Sciences, etc.
This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.
This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.
Group cohomology reveals a deep relationship between algebra and topology, and its recent applications have provided important insights into the Hodge conjecture and algebraic geometry more broadly. This book presents a coherent suite of computational tools for the study of group cohomology and algebraic cycles. Early chapters synthesize background material from topology, algebraic geometry, and commutative algebra so readers do not have to form connections between the literatures on their own. Later chapters demonstrate Peter Symonds's influential proof of David Benson's regularity conjecture, offering several new variants and improvements. Complete with concrete examples and computations throughout, and a list of open problems for further study, this book will be valuable to graduate students and researchers in algebraic geometry and related fields.
This book presents a link between modern analysis and topology. Based upon classical Morse theory it develops the finite dimensional analogue of Floer homology which, in the recent years, has come to play a significant role in geometry. Morse homology naturally arises from the gradient dynamical system associated with a Morse function. The underlying chain complex, already considered by Thom, Smale, Milnor and Witten, analogously forms the basic ingredient of Floer's homology theory. This concept of relative Morse theory in combination with Conley's continuation principle lends itself to an axiomatic homology functor. The present approach consistenly employs analytic methods in strict analogy with the construction of Floers homology groups. That is a calculus for certain nonlinear Fredholm operators on Banach manifolds which here are curve spaces and within which the solution sets form the focal moduli spaces. The book offers a systematic and comprehensive presentation of the analysis of these moduli spaces. All theorems within this analytic schedule comprising Fredholm theory, regularity and compactness results, gluing and orientation analysis, together with their proofs and pre-requisite material, are examined here in detail. This exposition thus brings a methodological insight into present-day analysis.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications - Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics.
This book aims to provide undergraduates with an understanding of geometric topology. Topics covered include a sampling from point-set, geometric, and algebraic topology. The presentation is pragmatic, avoiding the famous pedagogical method "whereby one begins with the general and proceeds to the particular only after the student is too confused to understand it." Exercises are an integral part of the text. Students taking the course should have some knowledge of linear algebra. An appendix provides a brief survey of the necessary background of group theory.
Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.
Appliies variational methods and critical point theory on infinite dimenstional manifolds to some problems in Lorentzian geometry which have a variational nature, such as existence and multiplicity results on geodesics and relations between such geodesics and the topology of the manifold. |
![]() ![]() You may like...
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,597
Discovery Miles 15 970
Gromov-Witten Theory of Quotients of…
Hiroshi Iritani, Todor Milanov, …
Paperback
R2,152
Discovery Miles 21 520
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,473
Discovery Miles 44 730
Introduction to Symplectic Topology
Dusa McDuff, Dietmar Salamon
Hardcover
R3,744
Discovery Miles 37 440
|