![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology
The idea of mutual classification of spaces and mappings is one of the main research directions of point set topology. In a systematical way, this book discusses the basic theory of generalized metric spaces by using the mapping method, and summarizes the most important research achievements, particularly those from Chinese scholars, in the theory of spaces and mappings since the 1960s. This book has three chapters, two appendices and a list of more than 400 references. The chapters are "The origin of generalized metric spaces", "Mappings on metric spaces" and "Classes of generalized metric spaces". Graduates or senior undergraduates in mathematics major can use this book as their text to study the theory of generalized metric spaces. Researchers in this field can also use this book as a valuable reference.
In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged."
This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups. The book will be of interest to researchers in geometric group theory.
In recent years, the old idea that gauge theories and string
theories are equivalent has been implemented and developed in
various ways, and there are by now various models where the string
theory / gauge theory correspondence is at work. One of the most
important examples of this correspondence relates Chern-Simons
theory, a topological gauge theory in three dimensions which
describes knot and three-manifold invariants, to topological string
theory, which is deeply related to Gromov-Witten invariants. This
has led to some surprising relations between three-manifold
geometry and enumerative geometry. This book gives the first
coherent presentation of this and other related topics. After an
introduction to matrix models and Chern-Simons theory, the book
describes in detail the topological string theories that correspond
to these gauge theories and develops the mathematical implications
of this duality for the enumerative geometry of Calabi-Yau
manifolds and knot theory. It is written in a pedagogical style and
will be useful reading for graduate students and researchers in
both mathematics and physics willing to learn about these
developments.
This book gathers the proceedings of the 2018 Abel Symposium, which was held in Geiranger, Norway, on June 4-8, 2018. The symposium offered an overview of the emerging field of "Topological Data Analysis". This volume presents papers on various research directions, notably including applications in neuroscience, materials science, cancer biology, and immune response. Providing an essential snapshot of the status quo, it represents a valuable asset for practitioners and those considering entering the field.
This book comes out of need and urgency (expressed especially in
areas of Information Retrieval with respect to Image, Audio,
Internet and Biology) to have a working tool to compare data.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
Problems involving the evolution of two- and three-dimensional domains arise in many areas of science and engineering. Emphasizing an Eulerian approach, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions presents valuable tools for the mathematical analysis of evolving domains. The book illustrates the efficiency of the tools presented through different examples connected to the analysis of noncylindrical partial differential equations (PDEs), such as Navier-Stokes equations for incompressible fluids in moving domains. The authors first provide all of the details of existence and uniqueness of the flow in both strong and weak cases. After establishing several important principles and methods, they devote several chapters to demonstrating Eulerian evolution and derivation tools for the control of systems involving fluids and solids. The book concludes with the boundary control of fluid-structure interaction systems, followed by helpful appendices that review some of the advanced mathematics used throughout the text. This authoritative resource supplies the computational tools needed to optimize PDEs and investigate the control of complex systems involving a moving boundary.
Since techniques from topology and category theory have been used increasingly by theoretical computer scientists in recent years, it was decided during the Oxford Topology Symposium to hold a special session which would be devoted to the application of these topics in computer science. By holding this session in the context of the topology symposium, the organizers hoped to achieve a cross-fertilization between the communities they brought together - providing mathematicians with a course of new problems with a more practical flavour, and computer scientists with a source of solutions and ideas.
This book is a survey of current topics in the mathematical theory
of knots. For a mathematician, a knot is a closed loop in
3-dimensional space: imagine knotting an extension cord and then
closing it up by inserting its plug into its outlet. Knot theory is
of central importance in pure and applied mathematics, as it stands
at a crossroads of topology, combinatorics, algebra, mathematical
physics and biochemistry.
Show that blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with point centers create Floer-non-trivial Lagrangian tori. These results are part of a conjectural decomposition of the Fukaya category of a compact symplectic manifold with a singularity-free running of the minimal model program, analogous to the description of Bondal-Orlov (Derived categories of coherent sheaves, 2002) and Kawamata (Derived categories of toric varieties, 2006) of the bounded derived category of coherent sheaves on a compact complex manifold.
Topology of Surfaces, Knots, and Manifolds offers an intuition-based and example-driven approach to the basic ideas and problems involving manifolds, particularly one- and two-dimensional manifolds. A blend of examples and exercises leads the reader to anticipate general definitions and theorems concerning curves, surfaces, knots, and links--the objects of interest in the appealing set of mathematical ideas known as "rubber sheet geometry." The result is a book that provides solid coverage of the mathematics underlying these topics.
This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.
This work describes fundamental groups and their topological soul mates, the covering spaces. An example of the algebraic topologist's dream come true, covering spaces are a geometric (that is, topological) structure that is completely characterized by its algebraic counterpart. areas of mathematics, but in keeping with the book's introductory aim, they are all quite elementary. Basic concepts are clearly defined, proofs are complete, and no results from the exercises are assumed in the text.
A New World of Geometry Awaits Your Discovery! The last stone falls out ... a rush of ancient air ... the glint of gold ... the tingle of discovery ... When explorers first opened the tombs of the ancient pharaohs, they knew that they had discovered something wonderful. That feeling, that same passionate sense of discovery, is one of the most powerful educational tools a text can deliver. Geometry by Discovery is an exciting new approach to geometry. This ground-breaking text taps the pedagogical value of discovery to help students stretch their geometric perspective and hone their geometric intuition. It actively engages students in solving mathematical problems, and empowers them to be successful problem-solvers and discoverers of mathematical ideas.
This superb text describes a novel and powerful method for allowing
design engineers to firstly model a linear problem in heat
conduction, then build a solution in an explicit form and finally
obtain a numerical solution. It constitutes a modelling and
calculation tool based on a very efficient and systemic
methodological approach.
A comprehensive, basic level introduction to metric spaces and fixed point theory An Introduction to Metric Spaces and Fixed Point Theory presents a highly self-contained treatment of the subject that is accessible for students and researchers from diverse mathematical backgrounds, including those who may have had little training in mathematics beyond calculus. It provides up-to-date coverage of the properties of metric spaces and Banach spaces, as well as a detailed summary of the primary concepts of set theory. The authors take a unique approach to the subject by including a number of helpful basic level exercises and using a simple and accessible level of presentation. They provide a highly comprehensive development of what is known in a purely metric context–especially in hyperconvex spaces–and a number of up-to-date Banach space results which are too recent to be found in other books on the subject. In addition to introductory coverage of metric spaces and Banach spaces, the authors provide detailed analyses of these important topics in the subject:
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
Dirk van Dalen's biography studies the fascinating life of the famous Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. Brouwer belonged to a special class of genius; complex and often controversial and gifted with a deep intuition, he had an unparalleled access to the secrets and intricacies of mathematics. Most mathematicians remember L.E.J. Brouwer from his scientific breakthroughs in the young subject of topology and for the famous Brouwer fixed point theorem. Brouwer's main interest, however, was in the foundation of mathematics which led him to introduce, and then consolidate, constructive methods under the name 'intuitionism'. This made him one of the main protagonists in the 'foundation crisis' of mathematics. As a confirmed internationalist, he also got entangled in the interbellum struggle for the ending of the boycott of German and Austrian scientists. This time during the twentieth century was turbulent; nationalist resentment and friction between formalism and intuitionism led to the Mathematische Annalen conflict ('The war of the frogs and the mice'). It was here that Brouwer played a pivotal role. The present biography is an updated revision of the earlier two volume biography in one single book. It appeals to mathematicians and anybody interested in the history of mathematics in the first half of the twentieth century.
A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader’s mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including:
Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21-29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.
Historically, science has strived to reduced complex problems to its simplest components, but more recently, it has recognized the merit of studying complex phenomena in situ. Fractal geometry is one such appealing approach, and this book discusses their application to complex problems in molecular biophysics. It provides a detailed, unified treatment of fractal aspects of protein and structure dynamics, fractal reaction kinetics in biochemical systems, sequence correlations in DNA and proteins, and descriptors of chaos in enzymatic systems. In an area that has been slow to acknowledge the use of fractals, this is an important addition to the literature, offering a glimpse of the wealth of possible applications. application to complex problems |
![]() ![]() You may like...
Science Fiction, Disruption and Tourism
Ian Yeoman, Una McMahon- Beattie, …
Paperback
R1,139
Discovery Miles 11 390
Industrial Applications of Renewable…
Silvia Nair Goyanes, Norma Beatriz D'accorso
Hardcover
R5,380
Discovery Miles 53 800
Flexible Polymer Chains in Elongational…
Tuan Q. Nguyen, Hans-Henning Kausch
Hardcover
R5,219
Discovery Miles 52 190
|