![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Structure & properties of the Earth > Volcanology & seismology
From prehistoric times to the fiery destruction of Pompeii in 79
A.D. and the more recent pyrotechnics of Mt. St. Helens, volcanic
eruptions have aroused fear, inspired myths and religious worship,
and prompted heated philosophical and scientific debate. Melting
the Earth chronicles humankind's attempt to understand this
terrifying phenomenon and provides a fascinating look at how our
conception of volcanoes has changed as knowledge of the earth's
internal processes has deepened over the centuries.
The book, after two introductory chapters on seismic design principles and structural seismic analysis methods, proceeds with the detailed description of seismic design methods for steel building structures. These methods include all the well-known methods, like force-based or displacement-based methods, plus some other methods developed by the present authors or other authors that have reached a level of maturity and are applicable to a large class of steel building structures. For every method, detailed practical examples and supporting references are provided in order to illustrate the methods and demonstrate their merits. As a unique feature, the present book describes not just one, as it is the case with existing books on seismic design of steel structures, but various seismic design methods including application examples worked in detail. The book is a valuable source of information, not only for MS and PhD students, but also for researchers and practicing engineers engaged with the design of steel building structures.
This book is a comprehensive advancement about the understanding of the volcanology of Mars in all its aspects, from its primary formation to its evolution in time, from the smaller structures to the bigger structures. It discusses the implications of volcanism in the general environmental and geological context of Mars. The book is validating the Southern Giant Impact Hypothesis explaining the formation of Mars in an interdisciplinary approach, including mineralogical, geochemical, volcanological as well as geomorphological information. Implications for future explorations in terms of resources are provided. This book serves as a textbook for undergraduate and graduate level to foster new basic research in the field of planetary volcanology and is a new guide for future missions toward a volcanic world, including new detailed information for the general audience who is always keen to know more about the history of Mars and its large volcanoes. The book also presents an updated situation about the water resources of the planet.
This book interprets Robert Hooke's Lectures and Discourses of Earthquakes, and Subterraneous Eruptions (1667-1694). Hooke's hypotheses concerning the origin of terrestrial features were of major importance to the development of geology. The volume consists of the original text of the Discourses transposed into modern type and paired with explanatory annotations; a brief up-to-date biography of Hooke, with emphasis on his geological contributions; and a comparison of selected passages from James Hutton, to show the transmission of ideas and Hooke's influence on later geologists.
This book presents the kinematic earthquake rupture studies from moment tenor to spatial-temporal rupture imaging. For real-time seismic hazard monitoring, the new stable automatic moment tensor (AutoBATS) algorithm is developed and implemented for the real-time MT reports by the Taiwan Earthquake Science Information System (TESIS). In order to understand the rupture behavior of the 2013 Mw 8.3 Okhotsk deep earthquake sequence, the 3D MUltiple SIgnal Classification Back Projection (MUSIC BP) with P and pP phases is applied. The combined P- and pP-wave BP imaging of the mainshock shows two stages of anti-parallel ruptures along two depths separating for about 10~15 km. Unusual super-shear ruptures are observed through the 3D BP images of two Mw 6.7 aftershocks. In last two chapters, the 3D BP imaging reveals similar rupture properties of two shallow catastrophic earthquakes (Mw=6.4) in southwestern Taiwan. Both the 2010 Jiashian and 2016 Meinong earthquakes ruptured westward with similar velocity of ~2.5 km/s along a NE-ward shallow dipping blind fault. The rupture similarities of the doublet suggest two parallel elongate asperities along the causative fault. After several decades of seismic quiescence, the 2010 Jiashian event initiated the rupture at the deeper asperity and triggered the shallower asperity which caused catastrophes six years later.
Most of the world's great volcanic massive suphide ore deposits, porphyry copper ores, and many of its richest gold veins occur in association with basalt-andesite-dactite-rhyolite laval suites that have erupted from ancient volcanic islands and their Precambrian equivalents. These volcanic arcs and their related aquatic-volcanic environments are now recognized as critical to an understanding of the evolution of the earth's crust and the origin of many important ore types. This book is concerned with the behavior of the 'ore elements'--copper, zinc, lead, cobalt, nickel, barium, and others--in young metamorphosed, volcanic arc lava suites, as these evolve from high-magnesium basalts to rhyolites. Using mostly the Pleistocene to recent lavas of the Solomon Islands younger volcanic suite, the author examines the patterns of abundance of these elements in rock constituents and describes the ways in which the metals may be enriched or impoverished in the residual melt as an arc lava series evolves from basalt to rhyolite. The book presents state-of-the-art information that will be indispensable to vulcanologists, geochemists, and mining geologists.
Twenty thousand years ago our planet was an icehouse. Temperatures were down six degrees; ice sheets kilometres thick buried much of Europe and North America and sea levels were 130m lower. The following 15 millennia saw an astonishing transformation as our planet metamorphosed into the temperate world upon which our civilisation has grown and thrived. One of the most dynamic periods in Earth history saw rocketing temperatures melt the great ice sheets like butter on a hot summer's day; feeding torrents of freshwater into ocean basins that rapidly filled to present levels. The removal of the enormous weight of ice at high latitudes caused the crust to bounce back triggering earthquakes in Europe and North America and provoking an unprecedented volcanic outburst in Iceland. A giant submarine landslide off the coast of Norway sent a tsunami crashing onto the Scottish coast while around the margins of the continents the massive load exerted on the crust by soaring sea levels encouraged a widespread seismic and volcanic rejoinder. In many ways, this post-glacial world mirrors that projected to arise as a consequence of unmitigated climate change driven by human activities. Already there are signs that the effects of climbing global temperatures are causing the sleeping giant to stir once again. Could it be that we are on track to bequeath to our children and their children not only a far hotter world, but also a more geologically fractious one?
Volcanoes have terrified and, at the same time, fascinated civilizations for thousands of years. Many aspects of volcanoes, most notably the eruptive processes and the compositional variations of magma, have been widely investigated for several decades and today constitute the core of any volcanology textbook. Nevertheless, in the last two decades, boosted by the availability of volcano monitoring data, there has been an increasing interest in the pre-eruptive processes related to the shallow accumulation and to the transfer of magma approaching the surface, as well as in the resulting structure of volcanoes. These are innovative and essential aspects of modern volcanology and, as driving volcanic unrest, their understanding also improves hazard assessment and eruption forecasting. So far, the significant progress made in unravelling these volcano-tectonic processes has not been supported by a comprehensive overview. This monograph aims at filling this gap, describing the pre-eruptive processes related to the structure, deformation and tectonics of volcanoes, at the local and regional scale, in any tectonic setting. The monograph is organized into three sections ("Fundamentals", "Magma migration towards the surface" and "The regional perspective"), consisting of thirteen chapters that are lavishly illustrated. The reader is accompanied in a journey within the volcano factory, discovering the processes associated with the shallow accumulation of magma and its transfer towards the surface, how these control the structure of volcanoes and their activity and, ultimately, improve our ability to estimate hazard and forecast eruption. The potential readership includes any academic, researcher and upper undergraduate student interested in volcanology, magma intrusions, structural geology, tectonics, geodesy, as well as geology and geophysics in general.
This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include seismic risk assessment, engineering seismology, wave propagation, remote sensing applications for geohazards,engineering vibrations, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.
The so-called "Non-conventional geophysical-geochemical exploration methods" are used, in the particular case of oil and gas exploration, for the detection and mapping of active microseepage of light hydrocarbons with a vertical nature on the gas-oil accumulations. The non-seismic exploration methods used in Cuba are: Remote Sensing, Gravimetry, Aeromagnetometry, Airborne Gamma Spectrometry (AGS) and Morphometry (non-conventional, from the Digital Elevation Model 90x90m). The AGS also classifies, as a non-conventional geophysical-geochemical method, together with the Redox Complex. Besides, it is of interest to know the geological-structural framework where these microseepage occur. That is why the benefits of using these methods (excluding Redox Complex), prior to their integration with geological and seismic data, translate into a first approximation, valid for an initial understanding of geology and mapping of favourable areas of possible gas-oil interest. Finally, from the implementation of these methods (including Redox Complex), perspective sectors for oil and gas are obtained, once the integration with geology and seismic has been carried out. The book presents a brief theoretical account of the methods used and, as practical results, a set of perspective sectors of possible interest for exploration in Cuba. As a complementary result, the book also offer an evaluation of the areas that meet the petroleum-geologist premises for the presence of large accumulations of high quality oil in Cuba.
Building upon the award-winning second edition, this comprehensive textbook provides a fundamental understanding of the formative processes of igneous and metamorphic rocks. Encouraging a deeper comprehension of the subject by explaining the petrologic principles, and assuming knowledge of only introductory college-level courses in physics, chemistry, and calculus, it lucidly outlines mathematical derivations fully and at an elementary level, making this the ideal resource for intermediate and advanced courses in igneous and metamorphic petrology. With over 500 illustrations, many in color, this revised edition contains valuable new material and strengthened pedagogy, including boxed mathematical derivations allowing for a more accessible explanation of concepts, and more qualitative end-of-chapter questions to encourage discussion. With a new introductory chapter outlining the "bigger picture," this fully updated resource will guide students to an even greater mastery of petrology.
This open access book summarizes the findings of the VUELCO project, a multi-disciplinary and cross-boundary research funded by the European Commission's 7th framework program. It comprises four broad topics: 1. The global significance of volcanic unrest 2. Geophysical and geochemical fingerprints of unrest and precursory activity 3. Magma dynamics leading to unrest phenomena 4. Bridging the gap between science and decision-making Volcanic unrest is a complex multi-hazard phenomenon. The fact that unrest may, or may not lead to an imminent eruption contributes significant uncertainty to short-term volcanic hazard and risk assessment. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the understanding of the causative links between subsurface processes, resulting unrest signals and imminent eruption is incomplete. When a volcano evolves from dormancy into a phase of unrest, important scientific, political and social questions need to be addressed. This book is aimed at graduate students, researchers of volcanic phenomena, professionals in volcanic hazard and risk assessment, observatory personnel, as well as emergency managers who wish to learn about the complex nature of volcanic unrest and how to utilize new findings to deal with unrest phenomena at scientific and emergency managing levels. This book is open access under a CC BY license.
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Because of their structural simplicity, bridges tend to be particularly vulnerable to damage and even collapse when subjected to earthquakes or other forms of seismic activity. Recent earthquakes, such as the ones in Kobe, Japan, and Oakland, California, have led to a heightened awareness of seismic risk and have revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's top authorities on the subject have collaborated to produce the most exhaustive reference on seismic bridge design currently available. Following a detailed examination of the seismic effects of actual earthquakes on local area bridges, the authors demonstrate design strategies that will make these and similar structures optimally resistant to the damaging effects of future seismic disturbances. Relying heavily on worldwide research associated with recent quakes, Seismic Design and Retrofit of Bridges begins with an in-depth treatment of seismic design philosophy as it applies to bridges. The authors then describe the various geotechnical considerations specific to bridge design, such as soil-structure interaction and traveling wave effects. Subsequent chapters cover conceptual and actual design of various bridge superstructures, and modeling and analysis of these structures. As the basis for their design strategies, the authors' focus is on the widely accepted capacity design approach, in which particularly vulnerable locations of potentially inelastic flexural deformation are identified and strengthened to accommodate a greater degree of stress. The text illustrates how accurate application of the capacity design philosophy to the design of new bridges results in structures that can be expected to survive most earthquakes with only minor, repairable damage. Because the majority of today's bridges were built before the capacity design approach was understood, the authors also devote several chapters to the seismic assessment of existing bridges, with the aim of designing and implementing retrofit measures to protect them against the damaging effects of future earthquakes. These retrofitting techniques, though not considered appropriate in the design of new bridges, are given considerable emphasis, since they currently offer the best solution for the preservation of these vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit of Bridges is enhanced with over 300 photos and line drawings to illustrate key concepts and detailed design procedures. As the only text currently available on the vital topic of seismic bridge design, it provides an indispensable reference for civil, structural, and geotechnical engineers, as well as students in related engineering courses. A state-of-the-art text on earthquake-proof design and retrofit of bridges Seismic Design and Retrofit of Bridges fills the urgent need for a comprehensive and up-to-date text on seismic-ally resistant bridge design. The authors, all recognized leaders in the field, systematically cover all aspects of bridge design related to seismic resistance for both new and existing bridges.
The importance of continuous research into Seismic Design for Engineering Plant can never be underestimated. Earthquake disaster prevention is a fascinating area requiring ingenious solutions to its unique problems. The benefits of sharing information from developments in this field are also of vital importance. This new book describes and assesses the seismic requirements for different types of structures. In focussing on nuclear chemical plants critical guidance is given on design and cost-effective methods. Bringing together valuable experience from a wide range of disciplines, this important volume covers an informative selection of topics. Contents include: Introduction to Seismic DesignExpected accelerations and ways to minimize interaction between structural and mechanical componentsThe practical aspects of designing and assessing mechanical handling equipment for seismic eventsNuclear safety requirements for travelling cranesOverview of vessel seismic designSeismic qualification of existing pipework in UK nuclear power plantsConstruction of a three-dimensional, large-scale shaking table land development of core technology The contributors to this book are experts in their field whether they are from the nuclear, academic, governmental, or engineering consultant sectors. Their experienced and informed contributions will highlight and explore the most recent developments and challenges facing this highly relevant field of mechanical engineering.
The relatively young theory of structured dependence between stochastic processes has many real-life applications in areas including finance, insurance, seismology, neuroscience, and genetics. With this monograph, the first to be devoted to the modeling of structured dependence between random processes, the authors not only meet the demand for a solid theoretical account but also develop a stochastic processes counterpart of the classical copula theory that exists for finite-dimensional random variables. Presenting both the technical aspects and the applications of the theory, this is a valuable reference for researchers and practitioners in the field, as well as for graduate students in pure and applied mathematics programs. Numerous theoretical examples are included, alongside examples of both current and potential applications, aimed at helping those who need to model structured dependence between dynamic random phenomena.
Serendipity placed David Johnston on Mount St. Helens when the volcano rumbled to life in March 1980. Throughout that ominous spring, Johnston was part of a team that conducted scientific research that underpinned warnings about the mountain. Those warnings saved thousands of lives when the most devastating volcanic eruption in U.S. history blew apart Mount St. Helens, but killed Johnston on the ridge that now bears his name. Melanie Holmes tells the story of Johnston's journey from a nature-loving Boy Scout to a committed geologist. Blending science with personal detail, Holmes follows Johnston through encounters with Aleutian volcanoes, his work helping the Portuguese government assess the geothermal power of the Azores, and his dream job as a volcanologist with the U.S. Geological Survey. Interviews and personal writings reveal what a friend called "the most unjaded person I ever met," an imperfect but kind, intelligent young scientist passionately in love with his life and work and determined to make a difference.
Providing the first worldwide survey of active earthquake faults, this book focuses on those described as 'seismic time bombs' - with the potential to destroy large cities in the developing world such as Port au Prince, Kabul, Tehran and Caracas. Leading international earthquake expert, Robert Yeats, explores both the regional and plate-tectonic context of active faults, providing the background for seismic hazard evaluation in planning large-scale projects such as nuclear power plants or hydroelectric dams. He also highlights work done in more advanced seismogenic countries like Japan, the United States, New Zealand and China, providing an important basis for upgrading building standards and other laws in developing nations. The book also explores the impact of major quakes on social development through history. It will form an accessible reference for analysts and consulting firms, and a convenient overview for academics and students of geoscience, geotechnical engineering and civil engineering, and land-use planning.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is also a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results.
Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory, and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.
Covering a key connection between geological processes and life on Earth, this multidisciplinary volume describes the effects of volcanism on the environment by combining present-day observations of volcanism and environmental changes with information from past eruptions preserved in the geologic record. The book discusses the origins, features and timing of volumetrically large volcanic eruptions; methods for assessing gas and tephra release in the modern day and the palaeo-record; and the impacts of volcanic gases and aerosols on the environment, from ozone depletion to mass extinctions. The significant advances that have been made in recent years in quantifying and understanding the impacts of present and past volcanic eruptions are presented and review chapters are included, making this a valuable book for academic researchers and graduate students in volcanology, climate science, palaeontology, atmospheric chemistry, and igneous petrology.
This handbook defines the discipline of historical seismology by detailing the latest research methodologies for studying historical earthquakes and tsunamis. It describes the various sources that reference seismic phenomena, discusses the critical problems of interpreting such sources, and presents a summary of the theories proposed throughout history to explain the causes of earthquakes. Incorporating examples from a broad geographic region, including Europe, North Africa, the Middle East, central Asia, and the Americas, the text presents numerous interpretations and misinterpretations of historical earthquakes and tsunamis in order to illustrate the key techniques. The authors also tie historical seismology research to archaeological investigations, and demonstrate how new scientific databases and catalogues can be compiled from information derived from the methodologies described. This is an important new reference for scientists, engineers, historians and archaeologists, providing a valuable foundation for understanding the Earth's seismic past and potential future seismic hazard.
The past few decades have witnessed remarkable growth in the application of passive seismic monitoring to address a range of problems in geoscience and engineering, from large-scale tectonic studies to environmental investigations. Passive seismic methods are increasingly being used for surveillance of massive, multi-stage hydraulic fracturing and development of enhanced geothermal systems. The theoretical framework and techniques used in this emerging area draw on various established fields, such as earthquake seismology, exploration geophysics and rock mechanics. Based on university and industry courses developed by the author, this book reviews all the relevant research and technology to provide an introduction to the principles and applications of passive seismic monitoring. It integrates up-to-date case studies and interactive online exercises, making it a comprehensive and accessible resource for advanced students and researchers in geophysics and engineering, as well as industry practitioners.
The inner core is a planet within a planet: a hot sphere with a mass of one hundred quintillion tons of iron and nickel that lies more than 5000 kilometres beneath our feet. It plays a crucial role in driving outer core fluid motion and the geodynamo, which generates the Earth's magnetic field. This book is the first to provide a comprehensive review of past and contemporary research on the Earth's inner core from a seismological perspective. Chapters cover the collection, processing and interpretation of seismological data, as well as our current knowledge of the structure, anisotropy, attenuation, rotational dynamics, and boundary of the inner core. Reviewing the latest research and suggesting new seismological techniques and future avenues, it is an essential resource for both seismologists and non-seismologists interested in this fascinating field of research. It will also form a useful resource for courses in seismology and deep Earth processes. |
You may like...
|