![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Communications engineering / telecommunications > WAP (wireless) technology
In the 1860s, radio waves were predicted by James Clerk Maxwell in his work on electromagnetism. It took a further twenty years for the first experiments to produce a working demonstration. In this guide to radio technology, first published in 1925, eminent physicist Sir Oliver Lodge (1851 1940) provides a concise history of the development of the wireless radio, explains the theory behind it, and includes some practical tips for amateurs. Having lived through and contributed to the discovery, he explains the difficulty of the early experiments, which took place in a time when terms like 'frequency' and 'inductance', now taken for granted, did not exist in the scientific vocabulary. His first-hand account reveals the incredible efforts poured into the development of a revolutionary modern technology, rekindling the sense of wonder that once surrounded this strange new science.
This book includes high-quality papers presented at Proceedings of First International Conference on Computational Electronics for Wireless Communications (ICCWC 2021), held at National Institute of Technology, Kurukshetra, Haryana, India, during June 11-12, 2021. The book presents original research work of academics and industry professionals to exchange their knowledge of the state-of-the-art research and development in computational electronics with an emphasis on wireless communications. The topics covered in the book are radio frequency and microwave, signal processing, microelectronics and wireless networks.
This book examines the discourse surrounding the wireless, created by the Anglo-Italian inventor Guglielmo Marconi. The wireless excited early twentieth-century audiences before it even became a viable black box technology. The wireless adhered to modernist values-speed, efficiency, militarization, and progress. Language surrounding the wireless is a form of technical communication, overlooked by today's practitioners. This book establishes a broader definition for technical communication by examining a selection of the discourse surrounding Marconi's wireless. The book's main themes are the following: 1) technical communication is all discourse surrounding technology, 2) the field of technical communication (or technical writing) should incorporate analyses of discourse surrounding technologies into its epistemology, 3) the wireless is a product of the society from which it comes (early twentieth-century Western civilization), and 4) the discourse surrounding the wireless is infused with tropes of progress-speed, efficiency, evolution, and ahistoricity.
This book introduces the Internet access for vehicles as well as novel communication and computing paradigms based on the Internet of vehicles. To enable efficient and reliable Internet connection for mobile vehicle users, this book first introduces analytical modelling methods for the practical vehicle-to-roadside (V2R) Internet access procedure, and employ the interworking of V2R and vehicle-to-vehicle (V2V) to improve the network performance for a variety of automotive applications. In addition, the wireless link performance between a vehicle and an Internet access station is investigated, and a machine learning based algorithm is proposed to improve the link throughout by selecting an efficient modulation and coding scheme. This book also investigates the distributed machine learning algorithms over the Internet access of vehicles. A novel broadcasting scheme is designed to intelligently adjust the training users that are involved in the iteration rounds for an asynchronous federated learning scheme, which is shown to greatly improve the training efficiency. This book conducts the fully asynchronous machine learning evaluations among vehicle users that can utilize the opportunistic V2R communication to train machine learning models. Researchers and advanced-level students who focus on vehicular networks, industrial entities for internet of vehicles providers, government agencies target on transportation system and road management will find this book useful as reference. Network device manufacturers and network operators will also want to purchase this book.
Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.
Wireless sensor networks consist of small, mostly battery powered computers. Despite their simplicity, each sensor node is equipped with its own memory, CPU and radio transceiver. A typical application is to scatter many of them over a large area. Some sensor nodes can take measurements like temperature, air pressure and humidity. The latest models can also capture audio and images. But even the simplest capabilities like monitoring the temperature can be used e.g., to detect and fight forest fires at an early stage. The strength of this new paradigm comes from the mere number of nodes. Messages are forwarded over long distances from node to node. However, a sensor network does not only provide its own communication infrastructure. Within this book, it will also be shown how it can be used like a massively distributed database or as a compute cluster which filters and analyzes its data prior to transmission. A key-factor to the success of a sensor network is its longevity. Communication algorithms for medium access, routing but also for encryption and time synchronization have to be redesigned carefully with energy efficiency in mind.
Whether you are a student taking an introductory MEMS course or a practising engineer who needs to get up to speed quickly on MEMS design, this practical guide provides the hands-on experience needed to design, fabricate and test MEMS devices. You will learn how to use foundry multi-project fabrication processes for low-cost MEMS projects, as well as computer-aided design tools (layout, modeling) that can be used for the design of MEMS devices. Numerous design examples are described and analysed, from fields including micro-mechanics, electrostatics, optical MEMS, thermal MEMS and fluidic MEMS. There's also a final chapter on packaging and testing MEMS devices, as well and exercises and design challenges at the end of every chapter. Solutions to the design challenge problems are provided online.
Cooperative transmission aims to improve the reliability of wireless mobile communications through the use of diversity provided by additional relays assisting in the transmission between the source and destination nodes. This is possible as the rationale behind spatio-temporal processing can be easily mapped onto networked systems. Autonomic Cooperative Networking studies the further evolution of this phenomenon by first involving the network layer routines and then additionally incorporating the notion of autonomic system design.
Ensuring reliable communication is an important concern in short-range wireless communication systems with stringent quality of service requirements. Key characteristics of these systems, including data rate, communication range, channel profiles, network topologies and power efficiency, are very different from those in long-range systems. This comprehensive book classifies short-range wireless technologies as high and low data rate systems. It addresses major factors affecting reliability at different layers of the protocol stack, detailing the best ways to enhance the capacity and performance of short-range wireless systems. Particular emphasis is placed on reliable channel estimation, state-of-the-art interference mitigation techniques and cooperative communications for improved reliability. The book also provides detailed coverage of related international standards including UWB, ZigBee, and 60 GHz communications. With a balanced treatment of theoretical and practical aspects of short-range wireless communications and with a focus on reliability, this is an ideal resource for practitioners and researchers in wireless communications.
For engineers, product designers, and technical marketers who need to design a cost-effective, easy-to-use, short-range wireless product that works, this practical guide is a must-have. It explains and compares the major wireless standards - Bluetooth, Wi-Fi, 802.11abgn, ZigBee, and 802.15.4 - enabling you to choose the best standard for your product. Packed with practical insights based on the author's 10 years of design experience, and highlighting pitfalls and trade-offs in performance and cost, this book will ensure you get the most out of your chosen standard by teaching you how to tailor it for your specific implementation. With information on intellectual property rights and licensing, production test, and regulatory approvals, as well as analysis of the market for wireless products, this resource truly provides everything you need to design and implement a successful short-range wireless product.
This book is a must-read for all network planners and other professionals wishing to improve the quality and cost efficiency of 3G and LTE networks In this book, the authors address the architecture of the 2/3G network and the Long Term Evolution (LTE) network. The book proposes analytical models that make the analysis and dimensioning of the most important interfaces, i.e. WCDMA or Iub, possible. Furthermore, the authors include descriptions of fundamental technological issues in 2/3 G networks, basic traffic engineering models and frequent examples of the application of analytical models in the analysis and dimensioning of the interface of cellular networks. The specific knowledge included in the content will enable the reader to understand and then to prepare appropriate programming softwares that will allow them to evaluate quality parameters of cellular networks, i.e. blocking probabilities or call losses. Additionally, the book presents models for the analysis and dimensioning of the Wideband Code Division Multiple Access (WCDMA) radio interface and the Iub interface, both carrying a mixture of Release 99 traffic (R99) and High-Speed Packet Access (HSPA) traffic streams. Finally, the analytical models presented in the book can be also used in the process of modeling and optimization of LTE networks. "Key Features: "Describes the architecture and the modes of operation of the cellular 2/3/4G systems and the LTE network Covers the traffic theory and engineering within the context of mobile networks Presents original analytical methods that enable their users to dimension selected interfaces of cellular networks Discusses models for the analysis and dimensioning of the Wideband Code Division Multiple Access (WCDMA) radio interface and the Iub interface, both carrying a mixture of Release 99 traffic (R99) and High-Speed Packet Access (HSPA) traffic streams Includes problems as well as an accompanying website containing solutions, software tools and interactive flash animations (http: //wiley.teletraffic.pl) This book will be an invaluable guide for professional engineers (radio planning engineers, optimization engineers, transmission engineers, core network engineers, Service Management engineers) working in the areas of mobile wireless networks technology, not only in optimization process, but also in profitability assessment of newly implemented services (i.e. in NPV - Net Present Value analysis), and researchers and scientists. Advanced students in the fields of mobile communications networks and systems will also find this book insightful.
Do you need to get up to speed quickly on the technologies and services that could transform the wireless world over the coming decade? Whether you work directly with wireless or in a sector where wireless solutions could be beneficial (e.g. healthcare, transport, sensor networks, location and smart metering), this concise guide provides a critical insight into future developments. For the first time, you will have a clear view of all the key technologies, including mesh networks, white space/cognitive devices, 4G/LTE and femtocells, and all the sectors or applications in which they could be used, with a comparison of the positives and negatives of each technology and sector area. You'll also see where the technologies required overlap and so could bring benefits across multiple areas, as well as how the key drivers of change in the past may impact on the future.
Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communications systems, and is already at the core of several wireless standards. Exploiting multipath scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This 2007 book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space-time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems.
This book dives into radio resource allocation optimizations, a research area for wireless communications, in a pragmatic way and not only includes wireless channel conditions but also incorporates the channel in a simple and practical fashion via well-understood equations. Most importantly, the book presents a practical perspective by modeling channel conditions using terrain-aware propagation which narrows the gap between purely theoretical work and that of industry methods. The provided propagation modeling reflects industry grade scenarios for radio environment map and hence makes the channel based resource allocation presented in the book a field-grade view. Also, the book provides large scale simulations that account for realistic locations with terrain conditions that can produce realistic scenarios applicable in the field. Most portions of the book are accompanied with MATLAB code and occasionally MATLAB/Python/C code. The book is intended for graduate students, academics, researchers of resource allocation in mathematics, computer science, and electrical engineering departments as well as working professionals/engineers in wireless industry.
This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory. Starting with background material on wireless communications and the capacity of MIMO channels, the book then reviews design criteria for space-time codes. A detailed treatment of the theory behind space-time block codes then leads on to an in-depth discussion of space-time trellis codes. The book continues with discussion of differential space-time modulation, BLAST and some other space-time processing methods and the final chapter addresses additional topics in space-time coding. The theory and practice sections can be used independently of each other. Written by one of the inventors of space-time block coding, this book is ideal for a graduate student familiar with the basics of digital communications, and for engineers implementing the theory in real systems.
Written in an easy-to-follow, tutorial style, this complete guide will allow students to quickly understand the key principles, techniques and applications of MIMO wireless communications. Important concepts such as MIMO channel models, power allocation and channel capacity, space-time codes, MIMO detection and antenna selection are covered in detail, providing practical insights into the world of modern telecommunication systems. The most up-to-date techniques are explained, with examples including spatial modulation, MIMO-based cooperative communications, large-scale MIMO systems, massive MIMO and space-time block coded spatial modulation. Supported by numerous solved examples, review questions, MATLAB problems and lecture slides, and including all the necessary mathematical background, this is an ideal text for students taking graduate, single-semester courses in wireless communications.
Analysing and designing reliable and fast wireless networks requires an understanding of the theory underpinning these systems and the engineering complexities of their implementation. This text describes the underlying principles and major applications of high-speed wireless technologies, with emphasis on ultra-wideband (UWB) wireless systems, 3G long term evolution, and 4G mobile networks. Key topics such as cross-layer optimization are discussed in detail and various forms of UWB, including multi-band OFDM UWB, are covered. Recent research developments are described before identifying the scope and direction for future research. The overlay problem (interference problem) in UWB is discussed, and the author aims to illustrate that OFDM is not the best wireless access technique for high speed transmission. Covering the latest technologies in the area, this book will be a valuable resource for graduate students of electrical and computer engineering as well as practitioners in the wireless communications industry.
"Wireless LAN Radios" presents a sophisticated overview of the subject, covering theory while also emphasizing the practical aspects of this promising technology. Coverage includes 802.11 flavors and system requirements; receiver and transmitter radio architectures; analog impairments and issues; key radio building blocks; calibration techniques; case studies; and a brief discussion of 802.11n. It offers a meaningful presentation of real-world issues facing designers, engineers, theorists, and researchers working in this industry.
If you are involved in designing, building, selling or regulating UWB devices, this concise and practical guide to UWB technology, standards, regulation, and intellectual property issues will quickly bring you up-to-speed. Packed with practical insights, implementation guidelines, and application examples, Essentials of UWB is a must-have resource for wireless professionals working in the field. Written by key figures in the development of UWB, the book describes UWB technology, and evaluates its suitability for applications in communications, radar, and imaging. UWB radios, protocols and implementation are covered, and a thorough account of UWB industry organization completes the picture. This is an invaluable guide for engineers involved in UWB device design, as well as for product marketing managers, sales support engineers and technical managers. It will also appeal to engineers with a deeper technical understanding of UWB who want to gain knowledge of the broader environment and future evolutionary expectations.
Wireless networks are under constant pressure to provide ever higher data rates to increasing numbers of users with greater reliability. Space-time processing technology, which uses multiple antennas and sophisticated signal processing techniques, is a powerful new tool for improving system performance. The technology already features in the UMTS and CDMA2000 mobile standards. This book is an accessible introduction to the theory of space-time wireless communications. The authors discuss the basics of space-time propagation, space-time channels, channel capacity, spatial diversity and space-time coding. They highlight important trade-offs in the design of practical systems and cover advanced topics such as space-time OFDM and spread-spectrum modulation, co-channel interference cancellation, and multiuser MIMO. The book is an ideal introduction to this rapidly growing field for graduate students taking courses on wireless communications and for practitioners in the wireless industry. Homework problems and other supporting material are available on a companion website.
Space-time coding is a technique that promises greatly improved performance in wireless networks by using multiple antennas at the transmitter and receiver. Space-Time Block Coding for Wireless Communications, first published in 2003, is an introduction to the theory of this technology. The authors develop the topic using a unified framework and cover a variety of topics ranging from information theory to performance analysis and space-time coding methods for both flat and frequency-selective fading multiple-antenna channels. The authors concentrate on key principles rather than specific practical applications, and present the material in a concise and accessible manner. Their treatment reviews the fundamental aspects of multiple-input, multiple-output communication theory, and guides the reader through a number of topics at the forefront of research and development. The book includes homework exercises and is aimed at graduate students and researchers working on wireless communications, as well as practitioners in the wireless industry.
Do you need to improve wireless system performance? Learn how to maximise the efficient use of resources with this systematic and authoritative account of wireless resource management. Basic concepts, optimization tools and techniques, and application examples, are thoroughly described and analysed, providing a unified framework for cross-layer optimization of wireless networks. State-of-the-art research topics and emerging applications, including dynamic resource allocation, cooperative networks, ad hoc/personal area networks, UWB, and antenna array processing, are examined in depth. If you are involved in the design and development of wireless networks, as a researcher, graduate student or professional engineer, this is a must-have guide to getting the best possible performance from your network.
Network coding promises to significantly impact the way communications networks are designed, operated, and understood. The first book to present a unified and intuitive overview of the theory, applications, challenges, and future directions of this emerging field, this is a must-have resource for those working in wireline or wireless networking. *Uses an engineering approach - explains the ideas and practical techniques *Covers mathematical underpinnings, practical algorithms, code selection, security, and network management *Discusses key topics of inter-session (non-multicast) network coding, lossy networks, lossless networks, and subgraph-selection algorithms Starting with basic concepts, models, and theory, then covering a core subset of results with full proofs, Ho and Lun provide an authoritative introduction to network coding that supplies both the background to support research and the practical considerations for designing coded networks. This is an essential resource for graduate students and researchers in electronic and computer engineering and for practitioners in the communications industry.
This indispensable book provides you with the key practical tools and background knowledge for deploying WiFi networks, as well as a solid appreciation of the emerging technologies. Thirty-eight self-contained contributions written by CTOs, prominent academic-based researchers, and industry leaders set out the physical and engineering principles underpinning the latest developments, and examine future potential. Topics covered include quality of service, security, high throughput 802.11, WLAN/cellular interworking, coexistence, network and radio research management, hardware design, hotspots, and public wireless broadband. Future WiFi standards and technologies, including the new 802.11 initiatives - 802.11s, 802.11n and 802.11k - are addressed, as are the various Wi Fi applications. Other emerging WiFi technologies covered include MIMO systems, intelligent (cognitive) systems, multihop (mesh) networks, WiFi sensors, WiFi RFID, WiFi mixed-mobile convergence, and long-range WiFi. This is an invaluable resource for researchers and graduate students in electrical engineering and computer science departments, as well as practitioners in the wireless communications industry.
Are you fully up-to-speed on today's modern spectrum management tools? As regulators move away from traditional spectrum management methods, introduce spectrum trading and consider opening up more spectrum to commons, do you understand the implications of these developments for your own networks? This is the first book to describe and evaluate modern spectrum management tools. Expert authors offer you unique insights into the technical, economic and management issues involved. Auctions, administrative pricing, trading, property rights and spectrum commons are all explained. A series of real-world case studies from around the world is used to highlight the strengths and weaknesses of the various approaches adopted by different regulators, and valuable lessons are drawn from these. This concise and authoritative resource is a must-have for telecom regulators, network planners, designers and technical managers at mobile and fixed operators and broadcasters, and academics involved in the technology and economics of radio spectrum. |
You may like...
Managing Catastrophic Loss of Sensitive…
Constantine Photopoulos
Paperback
R1,265
Discovery Miles 12 650
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Smart IoT for Research and Industry
Melody Moh, Kanta Prasad Sharma, …
Hardcover
R3,115
Discovery Miles 31 150
Fundamentals of Spatial Information…
Robert Laurini, Derek Thompson
Hardcover
R1,451
Discovery Miles 14 510
Selected Areas in Cryptography
Evangelos Kranakis, Paul C.Van Oorschot
Hardcover
R2,707
Discovery Miles 27 070
|