Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Understand the latest experimental tools in structural biology with this pioneering work Structural biology seeks to understand the chemical mechanisms and functions of biological molecules, such as proteins, based on their atomic structures. Until recently, these structures have been studied only statically, using procedures which deliberately freeze atomic motion. However, freezing eliminates the rapid structural motions so essential to biological activity and function; the molecules are inactive. But with the recent development of X-ray free electron laser (XFEL) sources, efforts to conduct dynamic experiments have expanded using the principles of dynamics and kinetics to capture active biological molecules as they function. Dynamics and Kinetics in Structural Biology promotes the development of these experiments and their successful application. It grounds readers in the foundational principles of dynamics and kinetics; proceeds through extended discussions of experimental procedures, data analysis techniques; and explores experimental frontiers in structural dynamics. The book will aid researchers to gather and interpret cutting-edge data on the dynamic structure of biological molecules, under conditions where they retain their biological functions. Dynamics and Kinetics in Structural Biology offers readers: Authorship by founding figures in the field In-depth presentation of time-resolved X-ray crystallography, solution scattering, and more A pioneering contribution to a rapidly developing field of study Dynamics and Kinetics in Structural Biology is essential reading for graduate students, scientists, researchers and industry professionals engaged in structural studies of biological systems. Industry professionals considering dynamic studies in the development of new product lines will also benefit.
Small angle solution scattering (SAS) is increasingly being applied to biological problems. It is a complementary technique that, when applied in appropriate circumstances with carefully structured questions, can provide unique information not available from other techniques. While small angle solution scattering has been around for some time, a confluence of recent developments has dramatically enhanced its power. Intense third generation X-ray sources, low noise detectors, development of new algorithms and the computational power to take advantage of these have all matured, and use of free-electron x-ray laser sources is on the horizon. Whole new classes of experiments and analyses have been created as a result. These include the generation of molecular envelopes, the ability to do time-resolved studies, and the ability to account for structural changes using modelling based on the SAS data. The technical improvements have also reduced the amount of time and material needed to carry out an experiment. Beamtime at synchrotron sources is in demand, workshops on the subject are popular and researchers adopting the technique as part of their repertoire are growing. With these in mind, this book was written to guide structural biologists who may wish to adopt the technique, understand its strengths and weaknesses or just have a general interest in its potential.
|
You may like...
Robert - A Queer And Crooked Memoir For…
Robert Hamblin
Paperback
(1)
|