Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
This book is based on selected papers from keynote and symposium sessions given at the 16th International Union of Food Science and Technology (IUFoST) World Congress, held in Foz do Iguacu, Brazil August, 2012. The theme of the Congress was the challenges faced by food science in both the developed and developing regions of the world. The symposia featured prominent world-renowned keynote and plenary speakers, young researchers, and the technical sessions covered the whole spectrum of basic and applied food science and technology, including consumer issues and education, diets and health, ethnic foods, and R&D.
Since its inception in 2002, the Central European Food Congress (CEFood) has been a biannual meeting intended for food producers and distributors as well as researchers and educators to promote research, development, innovation and education within food science and technology in the Middle European region with a tight connection to global trends. The 6th CEFood, held in Novi Sad, Serbia, May 23-26, 2012, highlighted the novel technologies and traditional foods aimed at both the European and global markets. Specifically, CEFood 2012 focused on the latest progress in fundamental and applied food science, research and development, innovative technology, food ingredients, novel trends in nutrition and health, functional and bioactive food, food engineering, food safety and quality and the food and feed market. This book will consist of contributions from various presenters at CEFood 2012, covering the major themes of this Congress. Chapters contributed by expert presenters from the 6th CEFood Congress of 2012 Highlights the novel technologies of food science Discusses the future of the food industry and food research
High pressure processing technology has been adopted worldwide at the industrial level to preserve a wide variety of food products without using heat or chemical preservatives. High Pressure Processing: Technology Principles and Applications will review the basic technology principles and process parameters that govern microbial safety and product quality, an essential requirement for industrial application. This book will be of interest to scientists in the food industry, in particular to those involved in the processing of products such as meat, fish, fruits, and vegetables. The book will be equally important to food microbiologists and processing specialists in both the government and food industry. Moreover, it will be a valuable reference for authorities involved in the import and export of high pressure treated food products. Finally, this update on the science and technology of high pressure processing will be helpful to all academic, industrial, local, and state educators in their educational efforts, as well as a great resource for graduate students interested in learning about state-of-the-art technology in food engineering.
Although chemical engineering and food technology are subject areas closely related to food processing systems and food plant design, coverage of the design of food plants is often sporadic and inadequately addressed in food technology and engineering books. Some books have attempted to treat food engineering from this dual point of view but, most have not achieved balanced coverage of the two. Focusing on food processing, rather than chemical plants, Food Plant Design presents precise design details with photos and drawings of different types of food processing plants, including food processing systems, refrigeration and steam systems, conveying systems, and buildings. The authors discuss the subject in an ordered format that gives you the tools to produce food products with minimum cost. Including modeling procedures for food processing systems and auxiliary systems, they elucidate synthesis techniques and procedures. Using a clear structure for different levels of information and data on different food processing alternatives, the book outlines solutions to plant design problems in the context of overall optimization of an agro-industrial system and corresponding food chain. It provides the work procedures and techniques for solving the design problems of a food processing plant and in making a defined food product.
Fruits and fruit based products are, in most cases, associated with very good sensory characteristics, health, well-being, perishability, relatively easy to mix with food products of diverse origin, amenable to be processed by conventional and novel technologies. Given the multiplicity of aspects whenever fruit preservation is considered, the editors took the challenge of covering in a thorough, comprehensive manner most aspects dealing with this topic. To accomplish these goals, the editors invited well known colleagues with expertise in specific disciplines associated with fruit preservation to contribute chapters to this book. Eighteen chapters were assembled in a sequence that would facilitate, like building blocks, to have at the same time, a birds-eye view and an in-depth coverage of traditional and novel technologies to preserve fruits. Even though processing took center stage in this book, ample space was dedicated to other relevant and timely topics on fruit preservation such as safety, consumer perception, sensory and health aspects. FEATURES: Traditional and Novel Technologies to Process Fruits Microwaves Ohmic Heating UV-C light Irradiation High Pressure Pulsed Electric Fields Ultrasound Vacuum Impregnation Membranes Ozone Hurdle Technology Topics Associated with Fruit Preservation Safety Nutrition and Health Consumer Perception Sensory Minimal Processing Packaging Unit Operations for Fruit Processing Cooling and Freezing Dehydration Frying
FROM THE PREFACE The purpose of this laboratory manual is to facilitate the understanding of the most relevant unit operations in food engineering. The first chapter presents information on how to approach laboratory experiments; topics covered include safety, preparing for a laboratory exercise, effectively performing an experiment, properly documenting data, and preparation of laboratory reports. The following eleven chapters cover unit operations centered on food applications: dehydration . . . . , thermal processing, friction losses in pipes, freezing, extrusion, evaporation, and physical separations. These chapters are systematically organized to include the most relevant theoretical background pertaining to each unit operation, the objectives of the laboratory exercise, materials and methods . . ., expected results, examples, questions, and references. The experiments presented have been designed for use with generic equipment to facilitate the adoption of this manual . . . .
Pulsed Electric Fields (PEF) is one of the nonthermal processing approaches that is receiving considerable attention by scientists, government and the food industry as a potential technique to be fully adopted to process foods at the industrial level. PEF presents a number of advantages including minimal changes to fresh foods, inactivation of a wide range of microorganisms, and enzymes. It also offers the opportunity to develop new food products not feasible through conventional thermal processing. Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications presents wide-ranging research and the latest developments in this emerging technology. This volume in the Food Preservation Technology Series includes 17 contributions by leading research groups, covering both fundamental and applied aspects of pulsed electric fields. Topics include engineering aspects, key physical properties with measured values in specific foods, detailed studies on the pulsed electric field inactivation of enzymes and microorganisms, comparisons with other technologies for microbial inactivation, shelf stability, sensory analysis, and volatile flavor profile, and an industrial perspective on pulsed electric food processing in relation to safety assurance.
In order to successfully produce food products with maximum quality, each stage of processing must be well-designed. Unit Operations in Food Engineering systematically presents the basic information necessary to design food processes and the equipment needed to carry them out. It covers the most common food engineering unit operations in detail, including guidance for carrying out specific design calculations. Initial chapters present transport phenomena basics for momentum, mass, and energy transfer in different unit operations. Later chapters present detailed unit operation descriptions based on fluid transport and heat and mass transfer. Every chapter concludes with a series of solved problems as examples of applied theory.
Consumer expectations are systematically growing, with demands for foods with a number of attributes, which are sometimes difficult for manufacturers to meet. The engineering processes that are needed to obtain top-quality foods are a major challenge due to the diversity of raw materials, intermediates, and final products. As in any other enterprise, the food industry must optimize each of the steps in the production chain to attain the best possible results. There is no question that a very important aspect to take into consideration when developing a process, designing a food factory, or modifying existing facilities is the in-depth knowledge of the basic engineering aspects involved in a given project. Introduction to Food Process Engineering covers the fundamental principles necessary to study, understand, and analyze most unit operations in the food engineering domain. It was conceived with two clear objectives in mind: 1) to present all of the subjects in a systematic, coherent, and sequential fashion in order to provide an excellent knowledge base for a number of conventional and unconventional processes encountered in food industry processing lines, as well as novel processes at the research and development stages; 2) to be the best grounding possible for another CRC Press publication, "Unit Operations in Food Engineering, Second Edition," by the same authors. These two books can be consulted independently, but at the same time, there is a significant and welcomed match between the two in terms of terminology, definitions, units, symbols, and nomenclature. Highlights of the book include:
Trends in Food Engineering presents a wide vision of food engineering, with an emphasis on topics vital to the food industry today. The first section deals with physical and sensory properties of food. The emphasis in these chapters is on structure-function relationships, food rheology, and the correlations between physicochemical and sensory data. The second section, on advances in food processing, includes recent developments in minimal preservation and thermal and nonthermal processing of foods. The book concludes with current topics in food engineering, including applied biotechnology, food additives, and functional properties of proteins.
Fruits and fruit based products are, in most cases, associated with very good sensory characteristics, health, well-being, perishability, relatively easy to mix with food products of diverse origin, amenable to be processed by conventional and novel technologies. Given the multiplicity of aspects whenever fruit preservation is considered, the editors took the challenge of covering in a thorough, comprehensive manner most aspects dealing with this topic. To accomplish these goals, the editors invited well known colleagues with expertise in specific disciplines associated with fruit preservation to contribute chapters to this book. Eighteen chapters were assembled in a sequence that would facilitate, like building blocks, to have at the same time, a birds-eye view and an in-depth coverage of traditional and novel technologies to preserve fruits. Even though processing took center stage in this book, ample space was dedicated to other relevant and timely topics on fruit preservation such as safety, consumer perception, sensory and health aspects. FEATURES: Traditional and Novel Technologies to Process Fruits Microwaves Ohmic Heating UV-C light Irradiation High Pressure Pulsed Electric Fields Ultrasound Vacuum Impregnation Membranes Ozone Hurdle Technology Topics Associated with Fruit Preservation Safety Nutrition and Health Consumer Perception Sensory Minimal Processing Packaging Unit Operations for Fruit Processing Cooling and Freezing Dehydration Frying
Since its inception in 2002, the Central European Food Congress (CEFood) has been a biannual meeting intended for food producers and distributors as well as researchers and educators to promote research, development, innovation and education within food science and technology in the Middle European region with a tight connection to global trends. The 6th CEFood, held in Novi Sad, Serbia, May 23-26, 2012, highlighted the novel technologies and traditional foods aimed at both the European and global markets. Specifically, CEFood 2012 focused on the latest progress in fundamental and applied food science, research and development, innovative technology, food ingredients, novel trends in nutrition and health, functional and bioactive food, food engineering, food safety and quality and the food and feed market. This book will consist of contributions from various presenters at CEFood 2012, covering the major themes of this Congress. Chapters contributed by expert presenters from the 6th CEFood Congress of 2012 Highlights the novel technologies of food science Discusses the future of the food industry and food research
This book is based on selected papers from keynote and symposium sessions given at the 16th International Union of Food Science and Technology (IUFoST) World Congress, held in Foz do Iguacu, Brazil August, 2012. The theme of the Congress was the challenges faced by food science in both the developed and developing regions of the world. The symposia featured prominent world-renowned keynote and plenary speakers, young researchers, and the technical sessions covered the whole spectrum of basic and applied food science and technology, including consumer issues and education, diets and health, ethnic foods, and R&D.
High pressure processing technology has been adopted worldwide at the industrial level to preserve a wide variety of food products without using heat or chemical preservatives. High Pressure Processing: Technology Principles and Applications will review the basic technology principles and process parameters that govern microbial safety and product quality, an essential requirement for industrial application. This book will be of interest to scientists in the food industry, in particular to those involved in the processing of products such as meat, fish, fruits, and vegetables. The book will be equally important to food microbiologists and processing specialists in both the government and food industry. Moreover, it will be a valuable reference for authorities involved in the import and export of high pressure treated food products. Finally, this update on the science and technology of high pressure processing will be helpful to all academic, industrial, local, and state educators in their educational efforts, as well as a great resource for graduate students interested in learning about state-of-the-art technology in food engineering.
A selected compilation of writings by IUFoST organization
supporters, Global Themes in Food Science and Technology were those
identified as representing the most important and relevant subjects
facing food scientists and technologists today. Chosen by an
international editorial board, these subjects offer insights into
current research and developments and were selected to stimulate
additional interest and work in these key areas.
Reflecting current trends in alternative food processing and preservation, this reference explores the most recent applications in pulsed electric field (PEF) and high-pressure technologies, food microbiology, and modern thermal and nonthermal operations to prevent the occurrence of food-borne pathogens, extend the shelf-life of foods, and improve the safety, quality, and nutritional value of various food products. Documents the results of the Emerging Technologies for the Food Industry symposium held in Madrid, Spain. Spanning the most influential breakthroughs in food engineering, this guide demonstrates the successful application of PEF technology to products such as fruit juices, eggs, and milk. It also studies factors affecting the PEF resistance of microorganisms, analyzes methods in predictive microbiology and its impact on food safety systems, and examines advances in the use of freezing technologies, ultraviolet light, supercritical fluid extraction, and commercial high-pressure equipment.
FROM THE PREFACE The purpose of this laboratory manual is to facilitate the understanding of the most relevant unit operations in food engineering. The first chapter presents information on how to approach laboratory experiments; topics covered include safety, preparing for a laboratory exercise, effectively performing an experiment, properly documenting data, and preparation of laboratory reports. The following eleven chapters cover unit operations centered on food applications: dehydration . . . ., thermal processing, friction losses in pipes, freezing, extrusion, evaporation, and physical separations. These chapters are systematically organized to include the most relevant theoretical background pertaining to each unit operation, the objectives of the laboratory exercise, materials and methods . . ., expected results, examples, questions, and references. The experiments presented have been designed for use with generic equipment to facilitate the adoption of this manual . . . .
The search for better strategies to preserve foods with minimal changes during processing has been of great interest in recent decades. Traditionally, edible films and coatings have been used as a partial barrier to moisture, oxygen, and carbon dioxide through selective permeability to gases, as well as improving mechanical handling properties. The advances in this area have been breathtaking, and in fact their implementation in the industry is already a reality. Even so, there are still new developments in various fields and from various perspectives worth reporting. Edible Films and Coatings: Fundamentals and Applications discusses the newest generation of edible films and coatings that are being especially designed to allow the incorporation and/or controlled release of specific additives by means of nanoencapsulation, layer-by-layer assembly, and other promising technologies. Covering the latest novelties in research conducted in the field of edible packaging, it considers state-of-the-art innovations in coatings and films; novel applications, particularly in the design of gourmet foods; new advances in the incorporation of bioactive compounds; and potential applications in agronomy, an as yet little explored area, which could provide considerable advances in the preservation and quality of foods in the field.
Trends in Food Engineering presents a wide vision of food engineering, with an emphasis on topics vital to the food industry today. The first section deals with physical and sensory properties of food. The emphasis in these chapters is on structure-function relationships, food rheology, and the correlations between physicochemical and sensory data. The second section, on advances in food processing, includes recent developments in minimal preservation and thermal and nonthermal processing of foods. The book concludes with current topics in food engineering, including applied biotechnology, food additives, and functional properties of proteins.
|
You may like...
|