Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This book provides an integrated collection of timely articles on the use of bioarray techniques in the fields of biotechnology and molecular medicine. It is the first book to comprehensively integrate molecular diagnostics and molecular pathology. This book serves as an indispensable reference for graduate students, post-docs, and professors as well as an explanatory analysis for executives and scientists in biotechnology and pharmaceutical companies.
Defined as, "The science about the development of an embryo from the fertilization of the ovum to the fetus stage," embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a "development cell." That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.
Single Molecule Science (SMS) has emerged from developing, using and combining technologies such as super-resolution microscopy, atomic force microscopy, and optical and magnetic tweezers, alongside sophisticated computational and modelling techniques. This comprehensive, edited volume brings together authoritative overviews of these methods from a biological perspective, and highlights how they can be used to observe and track individual molecules and monitor molecular interactions in living cells. Pioneers in this fast-moving field cover topics such as single molecule optical maps, nanomachines, and protein folding and dynamics. A particular emphasis is also given to mapping DNA molecules for diagnostic purposes, and the study of gene expression. With numerous illustrations, this book reveals how SMS has presented us with a new way of understanding life processes. A must-have for researchers and graduate students, as well as those working in industry, primarily in the areas of biophysics, biological imaging, genomics and structural biology.
Recent advances in genome editing tools using endonucleases such as TALENs, ZFNs, and CRISPRs, combined with genomic engineering technologies, have opened up a wide range of opportunities from applications in the basic sciences and disease biology research, to the potential for clinical applications and the development of new diagnostic tools. This complete guide to endonuclease-based genomic engineering gives readers a thorough understanding of this rapidly expanding field. Chapters cover the discovery, basic science, and application of these techniques, focusing particularly on their potential relevance to the treatment of cancer, and cardiovascular and immunological disease. The final section discusses the legal and ethical issues which accompany the technology. Providing authoritative coverage of the potential that genome editing and engineering have, this is an ideal reference for researchers and graduate students and those working in the biotechnology and pharmaceutical industries, as well as in a clinical setting.
This book provides an integrated collection of timely articles on the use of bioarray techniques in the fields of biotechnology and molecular medicine. It is the first book to comprehensively integrate molecular diagnostics and molecular pathology. This book serves as an indispensable reference for graduate students, post-docs, and professors as well as an explanatory analysis for executives and scientists in biotechnology and pharmaceutical companies.
Understanding mechanisms of gene regulation that are independent of the DNA sequence itself - epigenetics - has the potential to overthrow long-held views on central topics in biology, such as the biology of disease or the evolution of species. High throughput technologies reveal epigenetic mechanisms at a genome-wide level, giving rise to epigenomics as a new discipline with a distinct set of research questions and methods. Leading experts from academia, the biotechnology and pharmaceutical industries explain the role of epigenomics in a wide range of contexts, covering basic chromatin biology, imprinting at a genome-wide level, and epigenomics in disease biology and epidemiology. Details on assays and sequencing technology serve as an up-to-date overview of the available technological tool kit. A reliable guide for newcomers to the field as well as experienced scientists, this is a unique resource for anyone interested in applying the power of twenty-first-century genomics to epigenetic studies.
Understanding mechanisms of gene regulation that are independent of the DNA sequence itself - epigenetics - has the potential to overthrow long-held views on central topics in biology, such as the biology of disease or the evolution of species. High throughput technologies reveal epigenetic mechanisms at a genome-wide level, giving rise to epigenomics as a new discipline with a distinct set of research questions and methods. Leading experts from academia, the biotechnology and pharmaceutical industries explain the role of epigenomics in a wide range of contexts, covering basic chromatin biology, imprinting at a genome-wide level, and epigenomics in disease biology and epidemiology. Details on assays and sequencing technology serve as an up-to-date overview of the available technological tool kit. A reliable guide for newcomers to the field as well as experienced scientists, this is a unique resource for anyone interested in applying the power of twenty-first-century genomics to epigenetic studies.
Defined as, "The science about the development of an embryo from the fertilization of the ovum to the fetus stage," embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a "development cell." That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.
MicroRNAs (miRNAs) are RNA molecules, conserved by evolution, that
regulate gene expressions and their recent discovery is
revolutionising both basic biomedical research and drug discovery.
Expression levels of MiRNAs have been found to vary between tissues
and with developmental stages and hence evaluation of the global
expression of miRNAs potentially provides opportunities to identify
regulatory points for many different biological processes. This
wide-ranging reference work, written by leading experts from both
academia and industry, will be an invaluable resource for all those
wishing to use miRNA techniques in their own research, from
graduate students, post-docs and researchers in academia to those
working in R&D in biotechnology and pharmaceutical companies
who need to understand this emerging technology. From the discovery
of miRNAs and their functions to their detection and role in
disease biology, this volume uniquely integrates the basic science
with industry application towards drug validation, diagnostic and
therapeutic development.
RNA Interference (RNAi) technology has rapidly become one of the key methods used in functional genomics. RNAi is used to block the expression of genes and create phenotypes that can potentially yield clues about the function of these genes. In the postgenomic era, the elucidation of the physiological function of genes has become the rate-limiting step in the quest to develop 'gene-based drugs' and RNAi could potentially play a pivotal role in the validation of such novel drugs. In this 2005 overview, the basic concepts and applications of RNAi biology are discussed. Leading experts from both academia and industry have contributed to this invaluable reference. The volume is forwarded by Andrew Fire, one of the winners of the 2006 Nobel Prize for the discovery of RNA Interference.
MicroRNAs (miRNAs) are RNA molecules, conserved by evolution, that
regulate gene expressions and their recent discovery is
revolutionising both basic biomedical research and drug discovery.
Expression levels of MiRNAs have been found to vary between tissues
and with developmental stages and hence evaluation of the global
expression of miRNAs potentially provides opportunities to identify
regulatory points for many different biological processes. This
wide-ranging reference work, written by leading experts from both
academia and industry, will be an invaluable resource for all those
wishing to use miRNA techniques in their own research, from
graduate students, post-docs and researchers in academia to those
working in R&D in biotechnology and pharmaceutical companies
who need to understand this emerging technology. From the discovery
of miRNAs and their functions to their detection and role in
disease biology, this volume uniquely integrates the basic science
with industry application towards drug validation, diagnostic and
therapeutic development.
Discovered little more than a decade ago, optogenetics - a revolutionary technique combining genetic and optical methods to observe and control the function of neurons - is now a widely used research tool. Optogenetics-driven research has led to insights into Parkinson's disease and other neurological and psychiatric disorders. With contributions from leaders and innovators from both academia and industry, this volume explores the discovery and application of optogenetics, from the basic science to its potential clinical use. Chapters cover a range of optogenetics applications, including for brain circuits, plasticity, memory, learning, sleep, vision and neurodegenerative and neuropsychiatric diseases. Providing authoritative coverage of the huge potential that optogenetics research carries, this is an ideal resource for researchers and graduate students, as well as for those working in the biotechnology and pharmaceutical industries and in a clinical setting.
Over the last twenty years, genome-wide association studies (GWAS) have revealed a great deal about the genetic basis of a wide range of complex diseases and they will undoubtedly continue to have a broad impact as we move to an era of personalised medicine. This authoritative text, written by leaders and innovators from both academia and industry, covers the basic science as well as the clinical, biotechnological and pharmaceutical potential of these methods. With special emphasis given to highlighting pharmacogenomics and population genomics studies using next-generation technology approaches, this is the first book devoted to combining association studies with single nucleotide polymorphisms, copy number variants, haplotypes and expressed quantitative trait loci. A reliable guide for newcomers to the field as well as for experienced scientists, this is a unique resource for anyone interested in how the revolutionary power of genomics can be applied to solve problems in complex disease.
|
You may like...
|