Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, researchers and practitioners in the area of soft computing, systems modeling and control.
This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.
Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or "models". "Identification" provides mechanisms to establish the models and "control" provides mechanisms to improve system performances.This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.
This book presents solutions to control problems in a number of robotic systems and provides a wealth of worked-out examples with full analytical and numerical details, graphically illustrated to aid in reader comprehension. It also presents relevant studies on and applications of robotic system control approaches, as well as the latest findings from interdisciplinary theoretical studies. Featuring chapters on advanced control (fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis, and fault-tolerant control), the book will equip readers to easily tailor the techniques to their own applications. Accordingly, it offers a valuable resource for researchers, engineers, and students in the field of robotic systems.
The book presents recent applications and developments in the field of control of industrial systems, covering a wide range of modeling and feedback control using various robust approaches such as fuzzy systems, sliding mode control, and H-infinity. This book provides insights into theory, applications, and perspectives relevant to the field of robotic systems, exoskeletons, power systems, photovoltaic systems, etc., as well as general methodologies and paradigms around them. Each chapter provides an enriched understanding of a research topic along with a balanced treatment of the relevant theories, methods, or applications. It reports on the latest advances in the field. This book is a good reference for graduate students, researchers, educators, engineers, and scientists and contains a total of 15 chapters divided into five parts as follows. The first part of this book focuses on the application of fuzzy control to robotic systems and consists of three chapters. The second part of this book proposes the control of lower and upper limb exoskeletons and includes two chapters. The third part is dedicated to the control of power systems and comprises three chapters. The fourth part deals with various approaches to the modeling and control of industrial processes and comprises four chapters. The fifth and final part describes observers and fault-tolerant control systems and comprises five chapters.
This book highlights relevant studies and applications in the area of robotics, which reflect the latest research, from interdisciplinary theoretical studies and computational algorithm development, to representative applications. It presents chapters on advanced control, such as fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis and fault tolerant control etc. and addresses topics including cloud robotics, cable-driven robots, two-wheeled robots, mobile robots, swarm robots, hybrid vehicle, and drones. Each chapter employs a uniform structure: background, motivation, quantitative development (equations), case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.), allowing readers to easily tailor the techniques to their own applications.
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
This book focuses on unhealthy cyber-physical systems. Consisting of 14 chapters, it discusses recognizing the beginning of the fault, diagnosing the appearance of the fault, and stopping the system or switching to a special control mode known as fault-tolerant control. Each chapter includes the background, motivation, quantitative development (equations), and case studies/illustration/tutorial (simulations, experiences, curves, tables, etc.). Readers can easily tailor the techniques presented to accommodate their ad hoc applications.
This book presents solutions to control problems in a number of robotic systems and provides a wealth of worked-out examples with full analytical and numerical details, graphically illustrated to aid in reader comprehension. It also presents relevant studies on and applications of robotic system control approaches, as well as the latest findings from interdisciplinary theoretical studies. Featuring chapters on advanced control (fuzzy, neural, backstepping, sliding mode, adaptive, predictive, diagnosis, and fault-tolerant control), the book will equip readers to easily tailor the techniques to their own applications. Accordingly, it offers a valuable resource for researchers, engineers, and students in the field of robotic systems.
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, researchers and practitioners in the area of soft computing, systems modeling and control.
This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software. Â Â
This book gathers the selected papers from the Second International Symposium on Simulation and Process Modelling (ISSPM 2020), which was held online on August 29-30, 2020, due to COVID-19 pandemic. The Symposium provides a forum in virtual presentation for scholars, researchers and practitioners who are interested in the modelling and simulation of business processes, production and industrial processes, service and administrative processes, and public sector processes to develop theory and practice of simulation and process modelling.
New Trends in Observer-Based Control: A Practical Guide to Process and Engineering Applications presents a concise introduction to the latest advances in observer-based control design. The book gives a comprehensive tutorial on new trends in the design of observer-based controllers for which the separation principle is well established. It covers a wide range of applications, also including worked examples that make it ideal for both advanced courses and researchers starting work in the field. This book is also particularly suitable for engineers who want to quickly and efficiently enter the field.
New Trends in Observer-Based Control: An Introduction to Design Approaches and Engineering Applications, Volume One presents a clear-and-concise introduction to the latest advances in observer-based control design. It provides a comprehensive tutorial on new trends in the design of observer-based controllers for which the separation principle is well established. In addition, since the theoretical developments remain more advanced than the engineering applications, more experimental results are still needed. A wide range of applications are covered, and the book contains worked examples which make it ideal for both advanced courses and researchers starting in the field.
The book entitled "Advancements in Smart City and Intelligent Building" is the Proceedings of the International Conference on Smart City and Intelligent Building (ICSCIB 2018) held in Hefei, China, September 15-16, 2018. It contains 58 papers in total categorized into 8 different tracks, on Building Energy Efficiency, Construction Robot and Automation, Intelligent Community and Urban Safety, Intelligentialization of Heating Ventilation Air Conditioning System, Information Technology and Intelligent Transportation Systems, New Generation Intelligent Building Platform Techniques, Smart Home and Utility, and Smart Underground Space, which cover a wide range areas of smart cities and intelligent buildings. ICSCIB2018 provided an international forum for professionals, academics, and researchers to present the latest developments from interdisciplinary theoretical studies, computational algorithm developments and engineering applications in smart cities and smart buildings. This academic event featured many opportunities to network with colleagues from around the world in a wonderful environment. Its program covered invitation and presentations from scientists, researchers, and practitioners who have been working in the related areas to establish platforms for collaborative research projects in these fields. The conference invited leaders from industry and academia to exchange and share their experiences, present research results, explore collaborations and to spark new ideas, with the aim of developing new projects and exploiting new technology in these fields, and bridge theoretical studies and emerging applications in various science and engineering branches. This book addresses the recent development and achievement in the field of smart city and intelligent building. It is primarily intended for researchers and students for undergraduate and postgraduate programs in the background of multiple disciplines including computer science, information systems, information technology, automatic control and automation, electrical and electronic engineering, and telecommunications who wish to develop and share their ideas, knowledge and new findings in smart city and intelligent building.
|
You may like...
|