Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.
Introduction The exponential scaling of feature sizes in semiconductor technologies has side-effects on layout optimization, related to effects such as inter connect delay, noise and crosstalk, signal integrity, parasitics effects, and power dissipation, that invalidate the assumptions that form the basis of previous design methodologies and tools. This book is intended to sample the most important, contemporary, and advanced layout opti mization problems emerging with the advent of very deep submicron technologies in semiconductor processing. We hope that it will stimulate more people to perform research that leads to advances in the design and development of more efficient, effective, and elegant algorithms and design tools. Organization of the Book The book is organized as follows. A multi-stage simulated annealing algorithm that integrates floorplanning and interconnect planning is pre sented in Chapter 1. To reduce the run time, different interconnect plan ning approaches are applied in different ranges of temperatures. Chapter 2 introduces a new design methodology - the interconnect-centric design methodology and its centerpiece, interconnect planning, which consists of physical hierarchy generation, floorplanning with interconnect planning, and interconnect architecture planning. Chapter 3 investigates a net-cut minimization based placement tool, Dragon, which integrates the state of the art partitioning and placement techniques."
The automation of layout synthesis design under stringent timing specifications is essential for state-of-the-art VLSI circuits and systems design. Especially, the timing-driven layout synthesis with optimal placement and routing of transistors with proper sizing is most critical in view of the chip area, interconnection parasitics, circuit delay and power dissipation. This book presents a systematic and unified view of the layout synthesis problem with a strong focus on CMOS technology. The criticality of RC parasitics in the interconnects and the optimal sizing of both p-channel and n-channel translators are illustrated for motivation. Following the motivation, the problems of modeling circuit delays and translator sizing are formulated and solved with mathematical rigor. Various delay models for CMOS circuits are discussed to account for realistic interconnection parasitics, the effect of transistor sizes, and also the input slew rates. Also many of the efficient transistor sizing algorithms are critically reviewed and the most recent transistor sizing algorithm based on convex programming techniques is introduced. For design automation of the rigorous CMOS layout synthesis, an integrated system that employs a suite of functional modules is introduced for step-by-step illustration of the design optimization process that produces highly compact CMOS layouts that meet user-specified timing and logical netlist requirements. Through most rigorous discussion of the essential design automation process steps and important models and algorithms this book presents a unified systems approach that can be practiced for high-performance CMOS VLSI designs. This book serves as an excellentreference, and can be used as text in advanced courses covering VLSI design, especially for design automation of physical design.
Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization. Timing Analysis and Optimization of Sequential Circuits covers the following topics: Algorithms for sequential timing analysis Fast algorithms for clock skew optimization and their applications Efficient techniques for retiming large sequential circuits Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.
This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.
Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization.Timing Analysis and Optimization of Sequential Circuits covers the following topics: * Algorithms for sequential timing analysis * Fast algorithms for clock skew optimization and their applications * Efficient techniques for retiming large sequential circuits * Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.
The automation of layout synthesis design under stringent timing specifications is essential for state-of-the-art VLSI circuits and systems design. Especially, the timing-driven layout synthesis with optimal placement and routing of transistors with proper sizing is most critical in view of the chip area, interconnection parasitics, circuit delay and power dissipation. This book presents a systematic and unified view of the layout synthesis problem with a strong focus on CMOS technology. The criticality of RC parasitics in the interconnects and the optimal sizing of both p-channel and n-channel translators are illustrated for motivation. Following the motivation, the problems of modeling circuit delays and translator sizing are formulated and solved with mathematical rigor. Various delay models for CMOS circuits are discussed to account for realistic interconnection parasitics, the effect of transistor sizes, and also the input slew rates. Also many of the efficient transistor sizing algorithms are critically reviewed and the most recent transistor sizing algorithm based on convex programming techniques is introduced.For design automation of the rigorous CMOS layout synthesis, an integrated system that employs a suite of functional modules is introduced for step-by-step illustration of the design optimization process that produces highly compact CMOS layouts that meet user-specified timing and logical netlist requirements. Through most rigorous discussion of the essential design automation process steps and important models and algorithms this book presents a unified systems approach that can be practiced for high-performance CMOS VLSI designs. This book serves as an excellent reference, and can be used as text in advanced courses covering VLSI design, especially for design automation of physical design.
This book serves both as an introduction to computer architecture and as a guide to using a hardware description language (HDL) to design, model and simulate real digital systems. The book starts with an introduction to Verilog - the HDL chosen for the book since it is widely used in industry and straightforward to learn. Next, the instruction set architecture (ISA) for the simple VeSPA (Very Small Processor Architecture) processor is defined - this is a real working device that has been built and tested at the University of Minnesota by the authors. The VeSPA ISA is used throughout the remainder of the book to demonstrate how behavioural and structural models can be developed and intermingled in Verilog. Although Verilog is used throughout, the lessons learned will be equally applicable to other HDLs. Written for senior and graduate students, this book is also an ideal introduction to Verilog for practising engineers.
Introduction The exponential scaling of feature sizes in semiconductor technologies has side-effects on layout optimization, related to effects such as inter connect delay, noise and crosstalk, signal integrity, parasitics effects, and power dissipation, that invalidate the assumptions that form the basis of previous design methodologies and tools. This book is intended to sample the most important, contemporary, and advanced layout opti mization problems emerging with the advent of very deep submicron technologies in semiconductor processing. We hope that it will stimulate more people to perform research that leads to advances in the design and development of more efficient, effective, and elegant algorithms and design tools. Organization of the Book The book is organized as follows. A multi-stage simulated annealing algorithm that integrates floorplanning and interconnect planning is pre sented in Chapter 1. To reduce the run time, different interconnect plan ning approaches are applied in different ranges of temperatures. Chapter 2 introduces a new design methodology - the interconnect-centric design methodology and its centerpiece, interconnect planning, which consists of physical hierarchy generation, floorplanning with interconnect planning, and interconnect architecture planning. Chapter 3 investigates a net-cut minimization based placement tool, Dragon, which integrates the state of the art partitioning and placement techniques."
This book serves both as an introduction to computer architecture and as a guide to using a hardware description language (HDL) to design, model and simulate real digital systems. The book starts with an introduction to Verilog - the HDL chosen for the book since it is widely used in industry and straightforward to learn. Next, the instruction set architecture (ISA) for the simple VeSPA (Very Small Processor Architecture) processor is defined - this is a real working device that has been built and tested at the University of Minnesota by the authors. The VeSPA ISA is used throughout the remainder of the book to demonstrate how behavioural and structural models can be developed and intermingled in Verilog. Although Verilog is used throughout, the lessons learned will be equally applicable to other HDLs. Written for senior and graduate students, this book is also an ideal introduction to Verilog for practising engineers.
The physical design flow of any project depends upon the size of the design, the technology, the number of designers, the clock frequency, and the time to do the design. As technology advances and design-styles change, physical design flows are constantly reinvented as traditional phases are removed and new ones are added to accommodate changes in technology. Handbook of Algorithms for Physical Design Automation provides a detailed overview of VLSI physical design automation, emphasizing state-of-the-art techniques, trends and improvements that have emerged during the previous decade. After a brief introduction to the modern physical design problem, basic algorithmic techniques, and partitioning, the book discusses significant advances in floorplanning representations and describes recent formulations of the floorplanning problem. The text also addresses issues of placement, net layout and optimization, routing multiple signal nets, manufacturability, physical synthesis, special nets, and designing for specialized technologies. It includes a personal perspective from Ralph Otten as he looks back on the major technical milestones in the history of physical design automation. Although several books on this topic are currently available, most are either too broad or out of date. Alternatively, proceedings and journal articles are valuable resources for researchers in this area, but the material is widely dispersed in the literature. This handbook pulls together a broad variety of perspectives on the most challenging problems in the field, and focuses on emerging problems and research results.
|
You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|