Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The volume provides a forum for original peer-reviewed short communications, full-length research and review articles on new research findings and developments on the topic of genetic targets on cancer therapies. As the field is highly important it requires co-operation between research communities from all over the world to share their knowledge and experience in order to move the field forward. Each chapter includes a discussion of the impact of the tumor microenvironment and cancer stem cells and cover current knowledge in this area as it pertains to the disease, including emerging therapy targeting the microenvironment and/or cancer stem cells.
It has become clear that tumors result from excessive cell proliferation and a corresponding reduction in cell death caused by the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emp- sis has shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and TSGs function in the same pathways, providing positive and negative growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Mu- tions in tumor suppressor genes have been identified in familial cancer syndromes, and the same genes in many cases have been found to be mutationally inactivated in sporadically occurring cancers. In their normal state, TSGs control cancer development and progression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pa- ways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access not only the powerful tools now available to discover these genes, but also their links to cell biology and growth control.
It has become clear that tumors arise from excessive cell proliferation and a c- responding reduction in cell death. Tumors result from the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emphasis shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and tumor suppressor genes function in the same pathways, providing positive and ne- tive growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Tumor suppressor genes are mutated in hereditary cancer syndromes, as well as somatically in nonhereditary cancers. In their normal state, TSGs control cancer development and p- gression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pathways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access the powerful tools now available to discover these genes, as well as their links to cell biology and growth control.
An in depth review of our latest understanding of the molecular events that regulate cell death and those molecules that provide targets for developing agonists or antagonists to modulate death signaling for therapeutic purposes. The authors focus on the extrinsic system of death receptors, their regulation and function, and their abnormalities in cancer. Topics of particular interest include resistance to apoptosis, TRAIL signaling, death receptors in embryonic development, mechanisms of caspase activation, and death receptor mutations in cancer. Additional chapters address death signaling in melanoma, synthetic retinoids and death receptors, the role of p53 in death receptor regulation, immune suppression of cancer, and combination therapy with death ligands.
The volume provides a forum for original peer-reviewed short communications, full-length research and review articles on new research findings and developments on the topic of genetic targets on cancer therapies. As the field is highly important it requires co-operation between research communities from all over the world to share their knowledge and experience in order to move the field forward. Each chapter includes a discussion of the impact of the tumor microenvironment and cancer stem cells and cover current knowledge in this area as it pertains to the disease, including emerging therapy targeting the microenvironment and/or cancer stem cells.
It has become clear that tumors result from excessive cell proliferation and a corresponding reduction in cell death caused by the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emp- sis has shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and TSGs function in the same pathways, providing positive and negative growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Mu- tions in tumor suppressor genes have been identified in familial cancer syndromes, and the same genes in many cases have been found to be mutationally inactivated in sporadically occurring cancers. In their normal state, TSGs control cancer development and progression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pa- ways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access not only the powerful tools now available to discover these genes, but also their links to cell biology and growth control.
An in depth review of our latest understanding of the molecular events that regulate cell death and those molecules that provide targets for developing agonists or antagonists to modulate death signaling for therapeutic purposes. The authors focus on the extrinsic system of death receptors, their regulation and function, and their abnormalities in cancer. Topics of particular interest include resistance to apoptosis, TRAIL signaling, death receptors in embryonic development, mechanisms of caspase activation, and death receptor mutations in cancer. Additional chapters address death signaling in melanoma, synthetic retinoids and death receptors, the role of p53 in death receptor regulation, immune suppression of cancer, and combination therapy with death ligands.
|
You may like...
|