![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
Despite the fact that Maple V has become one of the most popular computer algebra systems on the market, surprisingly few users realize its potential in the field of scientific visualization. The purpose of this book is to equip the reader with a variety of graphics tools needed on the voyage of discovery into the complex and often beautiful world of curves and surfaces. A comprehensive treatment of Maple's graphics commands and structures is combined with an introduction to the main aspects of visual perception. Top priority is given to the use of light, color, perspective, and geometric transformations. Numerous examples, accompanied by pictures (many in color), cover all aspects of Maple graphics. The examples can be easily customized to suit the individual needs of the reader. The approach is context independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book can serve as a comprehensive reference manual. For the beginner, it offers a user- friendly elementary introduction to the subject, with mathematical requirements kept to a minimum. For those interested in advanced mathematical visualization, it explains how to maximize Maple's graphical capabilities. In particular, this book shows how to turn Maple into an excellent modeling tool capable of generating elaborate surfaces that conventional modelers cannot produce. These surfaces can be exported to an external ray tracer (e.g. POV-ray) for sophisticated photo-realistic rendering. All of the Maple code segments which are presented in the book, as well as high-resolution pictures showing alternative renderingsof some of the book's color plates, are included on the accompanying DOS diskette.
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry random sets, point processes, random mosaics and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes."
A new combinatorial foundation of the two concepts, based on a consideration of deep and classical results of homotopy theory, and an axiomatic characterization of the assumptions under which results in this field hold. Includes numerous explicit examples and applications in various fields of topology and algebra.
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
The selected contributions in this volume originated at the Sundance conference, which was devoted to discussions of current work in the area of free resolutions. The papers include new research, not otherwise published, and expositions that develop current problems likely to influence future developments in the field.
The outcome of a close collaboration between mathematicians and mathematical physicists, these Lecture Notes present the foundations of A. Connes noncommutative geometry, as well as its applications in particular to the field of theoretical particle physics. The coherent and systematic approach makes this book useful for experienced researchers and postgraduate students alike.
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.
2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.
The moduli space Mg of curves of fixed genus g - that is, the algebraic variety that parametrizes all curves of genus g - is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its Applications on September 2006 is one tangible indication of the interest. This volume of articles captures some of the spirit of the IMA workshop.
Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitzs proof of the isoperimetric inequality using Fourier series. This unified, self-contained volume is dedicated to Fourier analysis, convex geometry, and related topics. Specific topics covered include: the geometric properties of convex bodies the study of Radon transforms the geometry of numbers the study of translational tilings using Fourier analysis irregularities in distributions Lattice point problems examined in the context of number theory, probability theory, and Fourier analysis restriction problems for the Fourier transform The book presents both a broad overview of Fourier analysis and convexity as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi-particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
Previous publications on the generalization of the Thomae formulae to "Zn" curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces. "Generalizations of Thomae's Formulafor "Zn" Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory. This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory."
The main aim of this book is to present a completely algebraic approach to the Enriques¿ classification of smooth projective surfaces defined over an algebraically closed field of arbitrary characteristic. This algebraic approach is one of the novelties of this book among the other modern textbooks devoted to this subject. Two chapters on surface singularities are also included. The book can be useful as a textbook for a graduate course on surfaces, for researchers or graduate students in algebraic geometry, as well as those mathematicians working in algebraic geometry or related fields.
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge-Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly pi-regular.Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics, and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings, and algebraic combinatorics merged under the umbrella of algebraic monoids.
Arakelov introduced a component at infinity in arithmetic considerations, thus giving rise to global theorems similar to those of the theory of surfaces, but in an arithmetic context over the ring of integers of a number field. The book gives an introduction to this theory, including the analogues of the Hodge Index Theorem, the Arakelov adjunction formula, and the Faltings Riemann-Roch theorem. The book is intended for second year graduate students and researchers in the field who want a systematic introduction to the subject. The residue theorem, which forms the basis for the adjunction formula, is proved by a direct method due to Kunz and Waldi. The Faltings Riemann-Roch theorem is proved without assumptions of semistability. An effort has been made to include all necessary details, and as complete references as possible, especially to needed facts of analysis for Green's functions and the Faltings metrics.
Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research. |
You may like...
Functional Equations - Results and…
Zoltan Daroczy, Zsolt Pales
Hardcover
R2,851
Discovery Miles 28 510
Integral, Measure, and Ordering
Beloslav Riecan, Tibor Neubrunn
Hardcover
R5,353
Discovery Miles 53 530
Functional Equations, Inequalities and…
Themistocles Rassias
Hardcover
R2,666
Discovery Miles 26 660
Homotopy Methods in Topological Fixed…
Jerzy Jezierski, Waclaw Marzantowicz
Hardcover
R2,828
Discovery Miles 28 280
Differential Operators and Related…
Vadim M. Adamyan, Israel Gohberg, …
Hardcover
R2,471
Discovery Miles 24 710
Nonselfadjoint Operator Algebras…
Hari Bercovici, Ciprian Foias, …
Hardcover
R2,420
Discovery Miles 24 200
|