![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.
This volume collects a series of survey articles on complex algebraic geometry, which in the early 1990s was undergoing a major change. Algebraic geometry has opened up to ideas and connections from other fields that have traditionally been far away. This book gives a good idea of the intellectual content of the change of direction and branching out witnessed by algebraic geometry in the past few years.
Each of the articles is accompanied by the editor's notes. In
addition, each article has been studied (and, in parts, corrected)
by modern Russian mathematicians and appears with their
commentaries.
Presents the proceedings of the recently held conference at the University of Plymouth. Papers describe recent work by leading researchers in twistor theory and cover a wide range of subjects, including conformal invariants, integral transforms, Einstein equations, anti-self-dual Riemannian 4-manifolds, deformation theory, 4-dimensional conformal structures, and more.;The book is intended for complex geometers and analysts, theoretical physicists, and graduate students in complex analysis, complex differential geometry, and mathematical physics.
Geometry, of all the branches of mathematics, is the one that is most easily visualized by making something. However, it is all too easy to reduce it to reams of formulas to memorize and proofs to replicate. This book aims to take geometry back to its practical roots with 3D printed models and puzzles as well as demonstrations with household objects like flashlights and paper towel tubes. This is not a traditional geometry textbook, but rather builds up understanding of geometry concepts while also bringing in elements of concepts normally learned much later. Some of the models are counterintuitive, and figuring out how and why they work will both entertain and give insights. Two final chapters suggesting open-ended projects in astronomy and physics, and art and architecture, allow for deeper understanding and integration of the learning in the rest of the book.
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved).
The selected contributions in this volume originated at the Sundance conference, which was devoted to discussions of current work in the area of free resolutions. The papers include new research, not otherwise published, and expositions that develop current problems likely to influence future developments in the field.
Investigations by Baire, Lebesgue, Hausdorff, Marczewski, and othes have culminated invarious schemes for classifying point sets. This important reference/text bringstogether in a single theoretical framework the properties common to these classifications.Providing a clear, thorough overview and analysis of the field, Point Set Theoryutilizes the axiomatically determined notion of a category base for extending generaltopological theorems to a higher level of abstraction ... axiomatically unifies analogiesbetween Baire category and Lebesgue measure . .. enhances understanding of thematerial with numerous examples and discussions of abstract concepts ... and more.Imparting a solid foundation for the modem theory of real functions and associated areas,this authoritative resource is a vital reference for set theorists, logicians, analysts, andresearch mathematicians involved in topology, measure theory, or real analysis. It is anideal text for graduate mathematics students in the above disciplines who havecompleted undergraduate courses in set theory and real analysis.
Algebraic geometry is one of the most diverse fields of research in mathematics. It has had an incredible evolution over the past century, with new subfields constantly branching off and spectacular progress in certain directions, and at the same time, with many fundamental unsolved problems still to be tackled. In the spring of 2009 the first main workshop of the MSRI algebraic geometry program served as an introductory panorama of current progress in the field, addressed to both beginners and experts. This volume reflects that spirit, offering expository overviews of the state of the art in many areas of algebraic geometry. Prerequisites are kept to a minimum, making the book accessible to a broad range of mathematicians. Many chapters present approaches to long-standing open problems by means of modern techniques currently under development and contain questions and conjectures to help spur future research.
Matroid theory is a vibrant area of research that provides a unified way to understand graph theory, linear algebra and combinatorics via finite geometry. This book provides the first comprehensive introduction to the field which will appeal to undergraduate students and to any mathematician interested in the geometric approach to matroids. Written in a friendly, fun-to-read style and developed from the authors' own undergraduate courses, the book is ideal for students. Beginning with a basic introduction to matroids, the book quickly familiarizes the reader with the breadth of the subject, and specific examples are used to illustrate the theory and to help students see matroids as more than just generalizations of graphs. Over 300 exercises are included, with many hints and solutions so students can test their understanding of the materials covered. The authors have also included several projects and open-ended research problems for independent study.
This book represents the current (1985) state of knowledge about Zariski surfaces and related topics in differential equations in characteristic p > 0. It is aimed at research mathematicians and graduate and advanced undergraduate students of mathematics and computer science.
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.
An accessible text introducing algebraic geometries and algebraic
groups at advanced undergraduate and early graduate level, this
book develops the language of algebraic geometry from scratch and
uses it to set up the theory of affine algebraic groups from first
principles.
This book presents a new and innovative approach to Lie groups and differential geometry. Rather than compiling and reviewing the existing material on this classical subject, Professor Ortacgil instead questions the foundations of the subject, and proposes a new direction. Aimed at the curious and courageous mathematician, this book aims to provoke further debate and inspire further development of this original research.
The Galois theory of di?erence equations has witnessed a major evolution in the last two decades. In the particular case of q-di?erence equations, authors have introduced several di?erent Galois theories. In this memoir we consider an arithmetic approach to the Galois theory of q-di?erence equations and we use it to establish an arithmetical description of some of the Galois groups attached to q-di?erence systems.
This book establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space. A wealth of previously unpublished material is also featured, including Chapter 5 on numerical flatness criteria, Chapter 7 on K-flatness, and Chapter 9 on hulls and husks.
Homogeneous spaces of linear algebraic groups lie at the
crossroads of algebraic geometry, theory of algebraic groups,
classical projective and enumerative geometry, harmonic analysis,
and representation theory. By standard reasons of algebraic
geometry, in order to solve various problems on a homogeneous
space, it is natural and helpful to compactify it while keeping
track of the group action, i.e., to consider equivariant
completions or, more generally, open embeddings of a given
homogeneous space. Such equivariant embeddings are the subject of
this book. We focus on the classification of equivariant embeddings
in terms of certain data of "combinatorial" nature (the Luna-Vust
theory) and description of various geometric and
representation-theoretic properties of these varieties based on
these data. The class of spherical varieties, intensively studied
during the last three decades, is of special interest in the scope
of this book. Spherical varieties include many classical examples,
such as Grassmannians, flag varieties, and varieties of quadrics,
as well as well-known toric varieties. We have attempted to cover
most of the important issues, including the recent substantial
progress obtained in and around the theory of spherical
varieties.
For more than thirty years the senior author has been trying to learn algebraic geometry. In the process he discovered that many of the classic textbooks in algebraic geometry require substantial knowledge of cohomology, homological algebra, and sheaf theory. In an attempt to demystify these abstract concepts and facilitate understanding for a new generation of mathematicians, he along with co-author wrote this book for an audience who is familiar with basic concepts of linear and abstract algebra, but who never has had any exposure to the algebraic geometry or homological algebra. As such this book consists of two parts. The first part gives a crash-course on the homological and cohomological aspects of algebraic topology, with a bias in favor of cohomology. The second part is devoted to presheaves, sheaves, Cech cohomology, derived functors, sheaf cohomology, and spectral sequences. All important concepts are intuitively motivated and the associated proofs of the quintessential theorems are presented in detail rarely found in the standard texts.
In this modern treatment of the topic, Rolland Trapp presents an accessible introduction to the topic of multivariable calculus, supplemented by the use of fully interactive three-dimensional graphics throughout the text. Multivariable Calculus opens with an introduction to points, curves and surfaces, easing student transitions from two- to three-dimensions, and concludes with the main theorems of vector calculus. All standard topics of multivariable calculus are covered in between, including a variety of applications within the physical sciences. The exposition combines rigor and intuition, resulting in a well-rounded resource for students of the subject. In addition, the interactive three-dimensional graphics, accessible through the electronic text or via the companion website, enhance student understanding while improving their acuity. The style of composition, sequencing of subjects, and interactive graphics combine to form a useful text that appeals to a broad audience: students in the sciences, technology, engineering, and mathematics alike.
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takacs. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; "The 8th Conference on Lattice Path Combinatorics and Applications" provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach Lie Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Belti, W. Bertram, J. Faulkner, Ph. Gille, H. Glockner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf."
This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20-24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.
This book is a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating vector algebra. Even though vector analysis is a relatively recent development in the history of mathematics, it has become a powerful and central tool in describing and solving a wide range of geometric problems. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to, among others, lines, planes, intersections, rotating vectors, and vector differentiation. |
![]() ![]() You may like...
Reading Our Lives - The poetics of…
William L. Randall, Elizabeth McKim
Hardcover
R1,555
Discovery Miles 15 550
|