![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
Presenting the first systematic treatment of the behavior of Neron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Neron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Neron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Neron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Neron component groups, Edixhoven's filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.
From the Preface by H. Halberstam: "The unexpected arrival of Loo-Keng Hua in Europe in the fall of 1978 was for many of us a romantic event, a legend come to life. What had long been (and had seemed destined to remain) merely a revered name in the mathematical annals of our times assumed suddenly the handsome presence of the man himself, dignified yet jovial, youthful yet wise, serene yet ever questing for new achievements; and we realized how very much we had missed by his thirty years' absence from the international scene. While the publication of theses "Selecta" from his writings needs no justification beyond what is in them, it will, I hope, serve also as a way of saying a most cordial "welcome back". It has been an honor for me to play a small role in producing the Selecta. To select only parts from the imposing whole is automatically to be wrong, and it may well seem in the long run (to quote loosely from a poem of Hua himself) that I have repaid gifts in jade with artifacts of wood. ..."
This book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics.
This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.
Originally published in 1950 and written by the renowned mathematician, university professor, author and World War II codebreaker W. Gordon Welchman (1906-85), this textbook contains a treatment of projective geometry and provides a solid introduction to similar studies in space of more than two dimensions. The first three chapters analyse and establish the necessary foundations of the subject, whilst the remaining chapters are primarily concerned with the theory of conics, engaging with more complex topics such as metrical geometry, the application of matrix algebra, and invariants and covariants. The book also places much emphasis on the application of techniques rather than on the elementary principles of the subject and this is made easier by using algebraic foundations rather than purely geometrical axioms. This informative and insightful book will be of considerable value to scholars of mathematics as well as to anyone with an interest in the history of education.
Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne's Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light†approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
This volume contains almost all mathematical papers published between 1943 and 1984 of Igor R. Shafarevich. They appear in English translations (with two exceptions, which are in French and German), some of the papers have been translated into English especially for this edition. Notes by Shafarevich at the end of the volume contain corrections and remarks on the subsequent development of the subjects considered in the papers. Igor R. Shafarevich has made a big impact on mathematics. He has worked in the fields of algebra, algebraic number theory, algebraic geometry and arithmetic algebraic geometry. His papers reflect his broad interests and include topics such as the proof of the general reciprocity law, the realization of groups as Galois groups of number fields, class field towers, algebraic surfaces (in particular K3 surfaces), elliptic curves, and finiteness results on abelian varieties, algebraic curves over number fields and lie algebras.
Konrad Schoebel aims to lay the foundations for a consequent algebraic geometric treatment of variable Separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results." (Jim Stasheff)
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2-3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.
The purpose of this monograph is to present the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Highlighted are the new precise results on the L(2) extension of holomorphic functions. In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L(2) method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L(2) extension theorem with an optimal constant is included, obtained recently by Z. Blocki and by Q.-A. Guan and X.-Y. Zhou separately. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, and Guan-Zhou. Most of these results are obtained by the L(2) method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L(2) method obtained during these 15 years.
Extending Griffiths' classical theory of period mappings for compact Kahler manifolds, this book develops and applies a theory of period mappings of "Hodge-de Rham type" for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Froelicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkahler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.
This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, this book may be considered ideal for a one-semester advanced undergraduate or graduate level course. The core part of this book is based on three lectures given by the author at the Fields Institute during the thematic program on "Discrete Geometry and Applications" and contains four core topics. The first two topics surround active areas that have been outstanding from the birth of discrete geometry, namely dense sphere packings and tilings. Sphere packings and tilings have a very strong connection to number theory, coding, groups, and mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major topic of this book can be found under the sections on ball-polyhedra that study the possibility of extending the theory of convex polytopes to the family of intersections of congruent balls. This section of the text is connected in many ways to the above-mentioned major topics and it is also connected to some other important research areas as the one on coverings by planks (with close ties to geometric analysis). This fourth core topic is discussed under covering balls by cylinders.
This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras. Algebras, Quivers and Representations is targeted at researchers and graduate students in algebra, representation theory and triangulate categories.
Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Toth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.
This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.
We present an introduction to Berkovich's theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to etale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Remy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.
Hans Grauert was one of the world's leading mathematicians in the field of Several Complex Variables; he not only shaped the development of this area decisively but was also responsible for some of its most important results. This representative selection of mathematical papers exhibits Grauert's influential research and reflects two decades of excellence. In this edition, each paper has been augmented by a detailed commentary, thus offering a comprehensive survey of the development of this fascinating subject from its beginnings in Munster and Goettingen. Hans Grauert may be regarded as a direct successor of Gauss, holding a chair at Goettingen that before him was held by Siegel, Weyl, Hilbert, Riemann and Gauss.
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat's method of infinite descent with Kronecker's general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author's critical approach to the foundations of logic and mathematics.
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.
Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.
The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research.
The mathematical theory of "open" dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an "open" dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a "black box" that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications.
Focusing on two central conjectures of Asymptotic Geometric Analysis, the Kannan-Lovasz-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the treated topics. Offering a presentation suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, giving the interested reader rapid access to the core of these conjectures. In addition, four recent and important results in this theory are presented in a compelling way. The first two are theorems due to Eldan-Klartag and Ball-Nguyen, relating the variance and the KLS conjectures, respectively, to the hyperplane conjecture. Next, the main ideas needed prove the best known estimate for the thin-shell width given by Guedon-Milman and an approach to Eldan's work on the connection between the thin-shell width and the KLS conjecture are detailed. |
![]() ![]() You may like...
Stochastic Analysis and Applications…
Fred Espen Benth, Giulia Di Nunno, …
Hardcover
R4,725
Discovery Miles 47 250
Operations And Supply Chain Management
David Collier, James Evans
Hardcover
New Directions in Geometric and Applied…
Philipp Reiter, Simon Blatt, …
Hardcover
R3,240
Discovery Miles 32 400
Bubble Dynamics and Interface Phenomena…
John R. Blake, Jeremy M. Boulton-Stone, …
Hardcover
R8,986
Discovery Miles 89 860
Augmented Reality Art - From an Emerging…
Vladimir Geroimenko
Hardcover
R4,693
Discovery Miles 46 930
Transition, Turbulence and Combustion…
A. Hanifi, P.H. Alfredsson, …
Hardcover
R6,004
Discovery Miles 60 040
|