![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Groebner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Originally published in 1985, this classic textbook is an English translation of "Einfuhrung in die kommutative Algebra und algebraische Geometrie." As part of the Modern Birkhauser Classics series, the publisher is proud to make "Introduction to Commutative Algebra and Algebraic Geometry" available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and a closely related problem with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects. "
To mark the World Mathematical Year 2000 an International Conference on Number Theory and Discrete Mathematics in honour of the legendary Indian Mathematician Srinivasa Ramanuj~ was held at the centre for Advanced study in Mathematics, Panjab University, Chandigarh, India during October 2-6, 2000. This volume contains the proceedings of that conference. In all there were 82 participants including 14 overseas participants from Austria, France, Hungary, Italy, Japan, Korea, Singapore and the USA. The conference was inaugurated by Prof. K. N. Pathak, Hon. Vice-Chancellor, Panjab University, Chandigarh on October 2, 2000. Prof. Bruce C. Berndt of the University of Illinois, Urbana Chaimpaign, USA delivered the key note address entitled "The Life, Notebooks and Mathematical Contributions of Srinivasa Ramanujan". He described Ramanujan--as one of this century's most influential Mathematicians. Quoting Mark K. ac, Prof. George E. Andrews of the Pennsylvania State University, USA, in his message for the conference, described Ramanujan as a "magical genius". During the 5-day deliberations invited speakers gave talks on various topics in number theory and discrete mathematics. We mention here a few of them just as a sampling: * M. Waldschmidt, in his article, provides a very nice introduction to the topic of multiple poly logarithms and their special values. * C.
"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties - namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables - the latter not to be found elsewhere in the mathematics literature - round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
Assuming that the reader is familiar with sheaf theory, the book gives a self-contained introduction to the theory of constructible sheaves related to many kinds of singular spaces, such as cell complexes, triangulated spaces, semialgebraic and subanalytic sets, complex algebraic or analytic sets, stratified spaces, and quotient spaces. The relation to the underlying geometrical ideas are worked out in detail, together with many applications to the topology of such spaces. All chapters have their own detailed introduction, containing the main results and definitions, illustrated in simple terms by a number of examples. The technical details of the proof are postponed to later sections, since these are not needed for the applications.
This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.
Restricted-orientation convexity is the study of geometric objects whose intersections with lines from some fixed set are connected. This notion generalizes standard convexity and several types of nontraditional convexity. The authors explore the properties of this generalized convexity in multidimensional Euclidean space, and describ restricted-orientation analogs of lines, hyperplanes, flats, halfspaces, and identify major properties of standard convex sets that also hold for restricted-orientation convexity. They then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to that of standard convexity.
The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
This text covers Riemann surface theory from elementary aspects to the fontiers of current research. Open and closed surfaces are treated with emphasis on the compact case, while basic tools are developed to describe the analytic, geometric, and algebraic properties of Riemann surfaces and the associated Abelian varities. Topics covered include existence of meromorphic functions, the Riemann-Roch theorem, Abel's theorem, the Jacobi inversion problem, Noether's theorem, and the Riemann vanishing theorem. A complete treatment of the uniformization of Riemann sufaces via Fuchsian groups, including branched coverings, is presented, as are alternate proofs for the most important results, showing the diversity of approaches to the subject. Of interest not only to pure mathematicians, but also to physicists interested in string theory and related topics.
.Et moi, ..., Ii j'avait so comment en revenir. je One serviee mathematics has rendered the n 'y serais point all .' human nee. It hal put rommon sense back Jules Verne whme it belongs, on the topmost shelf next to the dusty canister labelled' discarded nonsense'. The series il divergent; therefore we may be EricT. Bell able to do scmething with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics ... '; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This volume began as the last part of a one-term graduate course given at the Fields Institute for Research in the Mathematical Sciences in the Autumn of 1993. The course was one of four associated with the 1993-94 Fields Institute programme, which I helped to organise, entitled "Artin L-functions". Published as [132]' the final chapter of the course introduced a manner in which to construct class-group valued invariants from Galois actions on the algebraic K-groups, in dimensions two and three, of number rings. These invariants were inspired by the analogous Chin burg invariants of [34], which correspond to dimensions zero and one. The classical Chinburg invariants measure the Galois structure of classical objects such as units in rings of algebraic integers. However, at the "Galois Module Structure" workshop in February 1994, discussions about my invariant (0,1 (L/ K, 3) in the notation of Chapter 5) after my lecture revealed that a number of other higher-dimensional co homological and motivic invariants of a similar nature were beginning to surface in the work of several authors. Encouraged by this trend and convinced that K-theory is the archetypical motivic cohomology theory, I gratefully took the opportunity of collaboration on computing and generalizing these K-theoretic invariants. These generalizations took several forms - local and global, for example - as I followed part of number theory and the prevalent trends in the "Galois Module Structure" arithmetic geometry.
The aim of this monograph is to introduce the reader to modern
methods of projective geometry involving certain techniques of
formal geometry. Some of these methods are illustrated in the first
part through the proofs of a number of results of a rather
classical flavor, involving in a crucial way the first
infinitesimal neighbourhood of a given subvariety in an ambient
variety. Motivated by the first part, in the second formal
functions on the formal completion X/Y of X along a closed
subvariety Y are studied, particularly the extension problem of
formal functions to rational functions.
It would be difficult to overestimate the influence and importance of modular forms, modular curves, and modular abelian varieties in the development of num- ber theory and arithmetic geometry during the last fifty years. These subjects lie at the heart of many past achievements and future challenges. For example, the theory of complex multiplication, the classification of rational torsion on el- liptic curves, the proof of Fermat's Last Theorem, and many results towards the Birch and Swinnerton-Dyer conjecture all make crucial use of modular forms and modular curves. A conference was held from July 15 to 18, 2002, at the Centre de Recerca Matematica (Bellaterra, Barcelona) under the title "Modular Curves and Abelian Varieties". Our conference presented some of the latest achievements in the theory to a diverse audience that included both specialists and young researchers. We emphasized especially the conjectural generalization of the Shimura-Taniyama conjecture to elliptic curves over number fields other than the field of rational numbers (elliptic Q-curves) and abelian varieties of dimension larger than one (abelian varieties of GL2-type).
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.
A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of Andre Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappie transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations."
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. ...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
The International Conference on Linear Statistical Inference LINSTAT'93 was held in Poznan, Poland, from May 31 to June 4, 1993. The purpose of the confer ence was to enable scientists, from various countries, engaged in the diverse areas of statistical sciences and practice to meet together and exchange views and re sults related to the current research on linear statistical inference in its broadest sense. Thus, the conference programme included sessions on estimation, prediction and testing in linear models, on robustness of some relevant statistical methods, on estimation of variance components appearing in linear models, on certain gen eralizations to nonlinear models, on design and analysis of experiments, including optimality and comparison of linear experiments, and on some other topics related to linear statistical inference. Within the various sessions 22 invited papers and 37 contributed papers were presented, 12 of them as posters. The conference gathered 94 participants from eighteen countries of Europe, North America and Asia. There were 53 participants from abroad and 41 from Poland. The conference was the second of this type, devoted to linear statistical inference. The first was held in Poznan in June, 4-8, 1984. Both belong to the series of confer ences on mathematical statistics and probability theory organized under the auspices of the Committee of Mathematics of the Polish Academy of Sciences, due to the ini tiative and efforts of its Mathematical Statistics Section. In the years 1973-1993 there were held in Poland nineteen such conferences, some of them international."
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given."
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use. Although analysis does not require an exhaustive knowledge of algebra, even of all the algebraic technique so far discovered, still there are topics whose con sideration prepares a student for a deeper understanding. However, in the ordinary treatise on the elements of algebra, these topics are either completely omitted or are treated carelessly. For this reason, I am cer tain that the material I have gathered in this book is quite sufficient to remedy that defect. I have striven to develop more adequately and clearly than is the usual case those things which are absolutely required for analysis. More over, I have also unraveled quite a few knotty problems so that the reader gradually and almost imperceptibly becomes acquainted with the idea of the infinite. There are also many questions which are answered in this work by means of ordinary algebra, although they are usually discussed with the aid of analysis. In this way the interrelationship between the two methods becomes clear."
These Proceedings contain selected original papers by the speakers invited to the Seminar on Deformations, organized in 1988/92 by Julian Lawrynowicz (L6di), whose most fruitful parts took place in 1988 in E6di, Paris and Mexico City (Profs. J. Adem, F. de1. Castillo Alvarado, G. Contreras Puente, R.M. Porter, E. Ramirez de Arellano - Mexico, D.F.; Prof. B. Gaveau - Paris; Profs. J. Lawrynowicz, J. Rembielinski, L. Wojtczak - Mdi et all.), in 1990 in -Mdi, Tokyo and Sapporo (Profs. S. Koshi - Sapporo, O. Suzuki - Tokyo, J. Lawrynowicz - L6di et all.), in 1991 in t6diand Rome (Profs. S. Marchiafava, F. Succi- Rome, J. Lawrynowicz, 1. Wojtczak - l.6di et all.), and in 1992 in E6di and M alinka - Mazurian Lakeland, Poland (Profs. C. Surry - Saint Etienne, J. Lawrynowicz, J. Rembielinski, 1. Wojtczak - L6di et all.). The meetings of the Seminar and the Proceedings were supported by the Polish state Committee for Scientific Research (KBN) and the -L6di Society of Sciences and Arts (LTN)
This volume contains the Proceedings of the conference "Complex and Differential Geometry 2009", held at Leibniz Universitat Hannover, September 14 - 18, 2009. It was the aim of this conference to bring specialists from differential geometry and (complex) algebraic geometry together and to discuss new developments in and the interaction between these fields. Correspondingly, the articles in this book cover a wide area of topics, ranging from topics in (classical) algebraic geometry through complex geometry, including (holomorphic) symplectic and poisson geometry, to differential geometry (with an emphasis on curvature flows) and topology.
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," etale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study."
This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. |
![]() ![]() You may like...
Hyperspectral Remote Sensing of…
Prasad Srinivasa Thenkabail, John G. Lyon, …
Paperback
R5,918
Discovery Miles 59 180
Case Studies in Geospatial Applications…
Pravat Kumar Shit, Gouri Sankar Bhunia, …
Paperback
R3,438
Discovery Miles 34 380
Learning Indigenous Languages: Child…
Barbara Pfeiler
Hardcover
|