![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S.The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
The second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C
Mumford's famous Red Book gives a simple readable account of the basic objects of algebraic geometry, preserving as much as possible their geometric flavor and integrating this with the tools of commutative algebra. It is aimed at graduate students or mathematicians in other fields wishing to learn quickly what algebraic geometry is all about. This new edition also includes an overview of the theory of curves, their moduli spaces and their Jacobians, one of the most exciting fields within algebraic geometry. The book is aimed at graduate students and professors seeking to learni) the concept of "scheme" as part of their study of algebraic geometry and ii) an overview of moduli problems for curves and of the use of theta functions to study these.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
This book provides a self-contained exposition of the theory of plane Cremona maps, reviewing the classical theory. The book updates, correctly proves and generalises a number of classical results by allowing any configuration of singularities for the base points of the plane Cremona maps. It also presents some material which has only appeared in research papers and includes new, previously unpublished results. This book will be useful as a reference text for any researcher who is interested in the topic of plane birational maps.
The present book is devoted to a study of relative Prüfer rings and Manis valuations, with an eye to application in real and p-adic geometry. If one wants to expand on the usual algebraic geometry over a non-algebraically closed base field, e.g. a real closed field or p-adically closed field, one typically meets lots of valuation domains. Usually they are not discrete and hence not noetherian. Thus, for a further develomemt of real algebraic and real analytic geometry in particular, and certainly also rigid analytic and p-adic geometry, new chapters of commutative algebra are needed, often of a non-noetherian nature. The present volume presents one such chapter.
Lie linksbetweentorus and Toroidal arethe complex missing groups any groups such and of Lie as complex pseudoconvexity groups. Manyphenomena groups the of beunderstood thestructure can onlythrough concept cohomologygroups of different behavior ofthe oftoroidal The cohomology complex groups groups. the of their toroidal Lie be characterized can by properties groups - groups in their centers. pearing book. So the oldest have not been treated in a Toroidal systematically groups in it who worked in this field and the mathematician youngest working living aboutthemain results these decidedto a concerning comprehensivesurvey give and to discuss problems. open groups of the torus As the Toroidal are generalization groups. groups non-compact and Grauert. As in the sense ofAndreotti manifolds are convex complex they others have similarbehaviorto Lie someofthem a complextori, complex groups whencec- different with for non-Hausdorff are example cohomology groups, mustbe used. newmethods pletely of is to describe the fundamental The aim of these lecture notes properties the reductiontheorem toroidal As a result ofthe qua- meromorphic groups. basic ends inthethird varieties of interest.Their Abelian are special description MainTheorem. withthe chapter wide atthe - ofSOPHus LIE -wasintroducedtoa This inhonour public theory " 1999. after Lie" in on Conference 100Years Leipzig, July 8-9, Sophus HUMBOLDT wishes to thank the ALEXANDER VON The first-named author FOUNDATION for partial support. December 1998 Hannoverand Toyama, YukitakaAbeandKlaus Kopfermann Contents 1 Introduction ..................................................... of Toroidal 3 1. The Concept Groups ............................. 1.1 and toroidal coordinates 3 Irrationality ........................ Toroidal 3 ........................................... groups 7 Complex homomorphisms .................................. Toroidal coordinates and C*n-q -fibre bundles 9 .................
It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld, su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O, the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws, weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties
The ultimate goal of this book is to explain that the Grothendieck-Teichmuller group, as defined by Drinfeld in quantum group theory, has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. To establish this result, the applications of methods of algebraic topology to operads must be developed. This volume is devoted primarily to this subject, with the main objective of developing a rational homotopy theory for operads. The book starts with a comprehensive review of the general theory of model categories and of general methods of homotopy theory. The definition of the Sullivan model for the rational homotopy of spaces is revisited, and the definition of models for the rational homotopy of operads is then explained. The applications of spectral sequence methods to compute homotopy automorphism spaces associated to operads are also explained. This approach is used to get a topological interpretation of the Grothendieck-Teichmuller group in the case of the little 2-disc operad. This volume is intended for graduate students and researchers interested in the applications of homotopy theory methods in operad theory. It is accessible to readers with a minimal background in classical algebraic topology and operad theory.
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e DEGREES(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the s
Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.
This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperk hler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out.In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.
The theory of schemes is the foundation for algebraic geometry proposed and elaborated by Alexander Grothendieck and his co-workers. It has allowed major progress in classical areas of algebraic geometry such as invariant theory and the moduli of curves. It integrates algebraic number theory with algebraic geometry, fulfilling the dreams of earlier generations of number theorists. This integration has led to proofs of some of the major conjectures in number theory (Deligne's proof of the Weil Conjectures, Faltings' proof of the Mordell Conjecture). This book is intended to bridge the chasm between a first course in classical algebraic geometry and a technical treatise on schemes. It focuses on examples, and strives to show "what is going on" behind the definitions. There are many exercises to test and extend the reader's understanding. The prerequisites are modest: a little commutative algebra and an acquaintance with algebraic varieties, roughly at the level of a one-semester course. The book aims to show schemes in relation to other geometric ideas, such as the theory of manifolds. Some familiarity with these ideas is helpful, though not required.
An up-to-date report on the current status of important research topics in algebraic geometry and its applications, such as computational algebra and geometry, singularity theory algorithms, numerical solutions of polynomial systems, coding theory, communication networks, and computer vision. Contributions on more fundamental aspects of algebraic geometry include expositions related to counting points on varieties over finite fields, Mori theory, linear systems, Abelian varieties, vector bundles on singular curves, degenerations of surfaces, and mirror symmetry of Calabi-Yau manifolds.
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
Ruled varieties are unions of a family of linear spaces. They are
objects of algebraic geometry as well as differential geometry,
especially if the ruling is developable.
Is there a vector space whose dimension is the golden ratio? Of course not-the golden ratio is not an integer! But this can happen for generalizations of vector spaces-objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
The subject of algebraic cycles has thrived through its interaction with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to such developments as a description of Chow groups in terms of algebraic K-theory, the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge and Tate, and the conjectures of Bloch and Beilinson. The immense recent progress in algebraic cycles, based on so many interactions with so many other areas of mathematics, has contributed to a considerable degree of inaccessibility, especially for graduate students. Even specialists in one approach to algebraic cycles may not understand other approaches well. This book offers students and specialists alike a broad perspective of algebraic cycles, presented from several viewpoints, including arithmetic, transcendental, topological, motives and K-theory methods. Topics include a discussion of the arithmetic Abel-Jacobi mapping, higher Abel-Jacobi regulator maps, polylogarithms and L-series, candidate Bloch-Beilinson filtrations, applications of Chern-Simons invariants to algebraic cycles via the study of algebraic vector bundles with algebraic connection, motivic cohomology, Chow groups of singular varieties, and recent progress on the Hodge and Tate conjectures for Abelian varieties.
This book treats the theory of representations of homogeneous polynomials as sums of powers of linear forms. The first two chapters are introductory, and focus on binary forms and Waring's problem. Then the author's recent work is presented mainly on the representation of forms in three or more variables as sums of powers of relatively few linear forms. The methods used are drawn from seemingly unrelated areas of commutative algebra and algebraic geometry, including the theories of determinantal varieties, of classifying spaces of Gorenstein-Artin algebras, and of Hilbert schemes of zero-dimensional subschemes. Of the many concrete examples given, some are calculated with the aid of the computer algebra program "Macaulay," illustrating the abstract material. The final chapter considers open problems. This book will be of interest to graduate students, beginning researchers, and seasoned specialists. Prerequisite is a basic knowledge of commutative algebra and algebraic geometry.
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
Introduction Model theorists have often joked in recent years that the part of mathemat- ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra" , turns out to have more and more to do with other subjects ofmathematics and to yield gen- uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge- bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence...
The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.
Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry. |
You may like...
Seminal Contributions to Modelling and…
Khalid Al-Begain, Andrzej Bargiela
Hardcover
R3,320
Discovery Miles 33 200
Advances in Time Series Analysis and…
Ignacio Rojas, Hector Pomares, …
Hardcover
R2,718
Discovery Miles 27 180
Cyberpatterns - Unifying Design Patterns…
Clive Blackwell, Hong Zhu
Hardcover
|