![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This book contains an exposition of the theory of meromorphic functions and linear series on a compact Riemann surface. Thus the main subject matter consists of holomorphic maps from a compact Riemann surface to complex projective space. Our emphasis is on families of meromorphic functions and holomorphic curves. Our approach is more geometric than algebraic along the lines of [Griffiths-Harrisl]. AIso, we have relied on the books [Namba] and [Arbarello-Cornalba-Griffiths-Harris] to agreat exten- nearly every result in Chapters 1 through 4 can be found in the union of these two books. Our primary motivation was to understand the totality of meromorphic functions on an algebraic curve. Though this is a classical subject and much is known about meromorphic functions, we felt that an accessible exposition was lacking in the current literature. Thus our book can be thought of as a modest effort to expose parts of the known theory of meromorphic functions and holomorphic curves with a geometric bent. We have tried to make the book self-contained and concise which meant that several major proofs not essential to further development of the theory had to be omitted. The book is targeted at the non-expert who wishes to leam enough about meromorphic functions and holomorphic curves so that helshe will be able to apply the results in hislher own research. For example, a differential geometer working in minimal surface theory may want to tind out more about the distribution pattern of poles and zeros of a meromorphic function.
Elementary number theory is concerned with arithmetic properties of the ring of integers. Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting, for example, analogues of the theorems of Fermat and Euler, Wilson?'s theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet?'s theorem on primes in an arithmetic progression. After presenting the required foundational material on function fields, the later chapters explore the analogy between global function fields and algebraic number fields. A variety of topics are presented, including: the ABC-conjecture, Artin?'s conjecture on primitive roots, the Brumer-Stark conjecture, Drinfeld modules, class number formulae, and average value theorems.
Automorphisms of Affine Spaces describes the latest results concerning several conjectures related to polynomial automorphisms: the Jacobian, real Jacobian, Markus-Yamabe, Linearization and tame generators conjectures. Group actions and dynamical systems play a dominant role. Several contributions are of an expository nature, containing the latest results obtained by the leaders in the field. The book also contains a concise introduction to the subject of invertible polynomial maps which formed the basis of seven lectures given by the editor prior to the main conference. Audience: A good introduction for graduate students and research mathematicians interested in invertible polynomial maps.
P. Dolbeault: R sidus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. N ron: Hauteurs et th orie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.
Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.
This book is an introduction to two higher-categorical topics in algebraic topology and algebraic geometry relying on simplicial methods. It is based on lectures - livered at the Centre de Recerca Matem ati ca in February 2008, as part of a special year on Homotopy Theory and Higher Categories. Ieke Moerdijk's lectures constitute an introduction to the theory ofdendroidal sets, an extension of the theory of simplicial sets designed as a foundation for the homotopy theory of operads. The theory has many features analogous to the theory of simplicial sets, but it also reveals many new phenomena, thanks to the presence of automorphisms of trees. Dendroidal sets admit a closed symmetric monoidal structure related to the Boardman{Vogt tensor product. The lecture notes develop the theory very carefully, starting from scratch with the combinatorics of trees, and culminating with a model structure on the category of dendroidal sets for which the brant objects are the inner Kan dendroidal sets. The important concepts are illustrated with detailed examples.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
Neron models were invented by A. Neron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Neron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Neron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Neron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Neron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Neron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves)."
"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS
Geometrie inequalities have a wide range of applieations-within geometry itself as weIl as beyond its limits. The theory of funetions of a eomplex variable, the ealculus of variations in the large, embedding theorems of funetion spaees, a priori estimates for solutions of differential equations yield many sueh examples. We have attempted to piek out the most general inequalities and, in model eases, we exhibit effeetive geometrie eonstruetions and the means of proving sueh inequalities. A substantial part of this book deals with isoperimetrie inequalities and their generalizations, but, for all their variety, they do not exhaust the eontents ofthe book. The objeets under eonsideration, as a rule, are quite general. They are eurves, surfaees and other manifolds, embedded in an underlying space or supplied with an intrinsie metrie. Geometrie inequalities, used for different purposes, appear in different eontexts-surrounded by a variety ofteehnieal maehinery, with diverse require- ments for the objeets under study. Therefore the methods of proof will differ not only from ehapter to ehapter, but even within individual seetions. An inspeetion of monographs on algebraie and funetional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type.
The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This "Ergebnisse" volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.
An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject.
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry random sets, point processes, random mosaics and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes."
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other areas. The book gives an overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers. It should also be of use to people working in other areas of mathematics and in the applied fields.
This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. We encounter here a friendly invitation to the field of "counting integer points in polytopes," and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant.
This is the first graduate textbook on the algorithmic aspects of real algebraic geometry. The main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This second edition contains several recent results on discriminants of symmetric matrices and other relevant topics.
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.
Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout 's Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course. |
![]() ![]() You may like...
Farmer's Bulletins: Nos; 1626-1650; With…
U.S. Department of Agriculture
Hardcover
R817
Discovery Miles 8 170
Canadian Agriculture in the 21st Century…
Marvin S Anderson
Hardcover
|