![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes")."
In the fall of 1992 I was invited by Professor Changho Keem to visit Seoul National University and give a series of talks. I was asked to write a monograph based on my talks, and the result was published by the Global Analysis Research Center of that University in 1994. The monograph treated deficiency modules and liaison theory for complete intersections. Over the next several years I continually thought of improvements and additions that I would like to make to the manuscript, and at the same time my research led me in directions that gave me a fresh perspective on much of the material, especially in the direction of liaison theory. This re sulted in a dramatic change in the focus of this manuscript, from complete intersections to Gorenstein ideals, and a substantial amount of additions and revisions. It is my hope that this book now serves not only as an introduction to a beautiful subject, but also gives the reader a glimpse at very recent developments and an idea of the direction in which liaison theory is going, at least from my perspective. One theme which I have tried to stress is the tremendous amount of geometry which lies at the heart of the subject, and the beautiful interplay between algebra and geometry. Whenever possible I have given remarks and examples to illustrate this interplay, and I have tried to phrase the results in as geometric a way as possible."
Serge Lang is one of the top mathematicians of our time. Being an excellent writer, Lang has made innumerable contributions in diverse fields in mathematics and they are invaluable. He was honored with the Cole Prize by the American Mathematical Society as well as with the Prix Carriere by the French Academy of Sciences. In these four volumes 83 of his research papers are collected. They range over a variety of topics and will be of interest to many readers.
Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor- mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func- tions: the volume functions, which appear in the Archimedes-Newton problem on in- tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada- mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds," published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
The aim of this book is to provide an account of the state of the art in Com putational Kinematics. We understand here under this term that branch of kinematics research involving intensive computations not only of the nu merical type, but also of symbolic as well as geometric nature. Research in kinematics over the last decade has been remarkably ori ented towards the computational aspects of kinematics problems. In fact, this work has been prompted by the need to answer fundamental questions such as the number of solutions, whether real or complex, that a given problem can admit as well as computational algorithms to support geo metric analysis. Problems of the first kind occur frequently in the analysis and synthesis of kinematic chains, when fine displacements are considered. The associated models, that are derived from kinematic relations known as closure equations, lead to systems of nonlinear algebraic equations in the variables or parameters sought. The algebraic equations at hand can take the form of multivariate polynomials or may involve trigonometric functions of unknown angles.
It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4 There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section on "Coding Gain" ( the engineer's justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven years of administration. For valuable discussions on the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan for his assistance with Chapter 10."
On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.
The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry," held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Soderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour. "
We dedicate this volume to Professor Parimala on the occasion of her 60th birthday. It contains a variety of papers related to the themes of her research. Parimala's rst striking result was a counterexample to a quadratic analogue of Serre's conjecture (Bulletin of the American Mathematical Society, 1976). Her in uence has cont- ued through her tenure at the Tata Institute of Fundamental Research in Mumbai (1976-2006),and now her time at Emory University in Atlanta (2005-present). A conference was held from 30 December 2008 to 4 January 2009, at the U- versity of Hyderabad, India, to celebrate Parimala's 60th birthday (see the conf- ence's Web site at http://mathstat.uohyd.ernet.in/conf/quadforms2008). The or- nizing committee consisted of J.-L. Colliot-Thel ' en ' e, Skip Garibaldi, R. Sujatha, and V. Suresh. The present volume is an outcome of this event. We would like to thank all the participants of the conference, the authors who have contributed to this volume, and the referees who carefully examined the s- mitted papers. We would also like to thank Springer-Verlag for readily accepting to publish the volume. In addition, the other three editors of the volume would like to place on record their deep appreciation of Skip Garibaldi's untiring efforts toward the nal publication.
This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.
The articles in this volume are an outgrowth of an International Confer- ence in Intersection Theory that took place in Bologna, Italy (December 1997). In a somewhat unorthodox format aimed at both the mathematical community as well as summer school students, talks were research-oriented as well as partly expository. There were four series of expository talks by the following people: M. Brion, University of Grenoble, on Equivariant Chow groups and applications; H. Flenner, University of Bochum, on Joins and intersections; E. M. Friedlander, Northwestern University, on Intersection products for spaces of algebraic cycles; R. Laterveer, University of Strasbourg, on Bigraded Chow (co)homology. Four introductory papers cover the following topics and bring the reader to the forefront of research: 1) the excess intersection algorithm of Stuckrad and Vogel, combined with the deformation to the normal cone, together with many of its geo- metric applications; 2) new and very important homotopy theory techniques that are now used in intersection theory; 3) the Bloch-Beilinson filtration and the theory of motives; 4) algebraic stacks, the modern language of moduli theory. Other research articles concern such active fields as stable maps and Gromov-Witten invariants, deformation theory of complex varieties, and others. Organizers of the conference were Rudiger Achilles, Mirella Manaresi, and Angelo Vistoli, all from the University of Bologna; the scientific com- mittee consisted of Geir Ellingsrud, University of Oslo, William Fulton, University of Michigan at Ann Arbor, and Angelo Vistoli. The conference was financed by the European Union (contract no.
The subject of real analytic functions is one of the oldest in modern mathematics and is the wellspring of the theory of analysis, both real and complex. To date, there is no comprehensive book on the subject, yet the tools of the theory are widely used by mathematicians today. Key topics in the theory of real analytic functions that are covered in this text and are rather difficult to pry out of the literature include: the real analytic implicit function theorem, resolution of singularities, the FBI transform, semi-analytic sets, Faa di Bruno's formula and its applications, zero sets of real analytic functions, Lojaciewicz's theorem, Puiseaux's theorem. New to this second edition are such topics as: * A more revised and comprehensive treatment of the Faa di Bruno formula * An alternative treatment of the implicit function theorem * Topologies on the space of real analytic functions * The Weierstrass Preparation Theorem This well organized and clearly written advanced textbook introduces students to real analytic functions of one or more real variables in a systematic fashion. The first part focuses on elementary properties and classical topics and the second part is devoted to more difficult topics. Many historical remarks, examples, references and an excellent index should encourage student and researcher alike to further study this valuable and exciting theory.
Affine flag manifolds are infinite dimensional versions of familiar objects such as Grassmann varieties. The book features lecture notes, survey articles, and research notes - based on workshops held in Berlin, Essen, and Madrid - explaining the significance of these and related objects (such as double affine Hecke algebras and affine Springer fibers) in representation theory (e.g., the theory of symmetric polynomials), arithmetic geometry (e.g., the fundamental lemma in the Langlands program), and algebraic geometry (e.g., affine flag manifolds as parameter spaces for principal bundles). Novel aspects of the theory of principal bundles on algebraic varieties are also studied in the book.
: So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe
This collection of original papers related to the Israeli GAFA seminar (on Geometric Aspects of Functional Analysis) from the years 2006 to 2011 continues the long tradition of the previous volumes, which reflect the general trends of Asymptotic Geometric Analysis, understood in a broad sense, and are a source of inspiration for new research. Most of the papers deal with various aspects of the theory, including classical topics in the geometry of convex bodies, inequalities involving volumes of such bodies or more generally, logarithmically-concave measures, valuation theory, probabilistic and isoperimetric problems in the combinatorial setting, volume distribution on high-dimensional spaces and characterization of classical constructions in Geometry and Analysis (like the Legendre and Fourier transforms, derivation and others). All the papers here are original research papers.
Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and etale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the etale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the etale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer-Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel's work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.
Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities."
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Consider a linear partial differential operator A that maps a vector-valued function Y = (Yl,"" Ym) into a vector-valued function I = (h, ..., II). We assume at first that all the functions, as well as the coefficients of the differen tial operator, are defined in an open domain Jl in the n-dimensional Euclidean n space IR, and that they are smooth (infinitely differentiable). A is called an overdetermined operator if there is a non-zero differential operator A' such that the composition A' A is the zero operator (and underdetermined if there is a non-zero operator A" such that AA" = 0). If A is overdetermined, then A'I = 0 is a necessary condition for the solvability of the system Ay = I with an unknown vector-valued function y. 3 A simple example in 1R is the operator grad, which maps a scalar func tion Y into the vector-valued function (8y/8x , 8y/8x2, 8y/8x3)' A necessary solvability condition for the system grad y = I has the form curl I = O."
This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.
Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures."
These notes are an expanded and updated version of a course of lectures which I gave at King's College London during the summer term 1979. The main topic is the Hermitian classgroup of orders, and in particular of group rings. Most of this work is published here for the first time. The primary motivation came from the connection with the Galois module structure of rings of algebraic integers. The principal aim was to lay the theoretical basis for attacking what may be called the "converse problem" of Galois module structure theory: to express the symplectic local and global root numbers and conductors as algebraic invariants. A previous edition of these notes was circulated privately among a few collaborators. Based on this, and following a partial solution of the problem by the author, Ph. Cassou-Nogues and M. Taylor succeeded in obtaining a complete solution. In a different direction J. Ritter published a paper, answering certain character theoretic questions raised in the earlier version. I myself disapprove of "secret circulation," but the pressure of other work led to a delay in publication; I hope this volume will make amends. One advantage of the delay is that the relevant recent work can be included. In a sense this is a companion volume to my recent Springer-Ergebnisse-Bericht, where the Hermitian theory was not dealt with. Our approach is via "Hom-groups," analogous to that followed in recent work on locally free classgroups. |
![]() ![]() You may like...
Functional Encryption
Khairol Amali Bin Ahmad, Khaleel Ahmad, …
Hardcover
R2,911
Discovery Miles 29 110
Shelly Cashman Series Microsoft…
Misty Vermaat, Ellen Monk, …
Paperback
|