![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
The plan to write this book was laid out in April 1987 at Oberwolfach, dur- ing the Conference "Reelle Algebraische Geometrie". Afterwards we met at various conferences and seminars in Luminy, Madrid, Munster, Oberwolfach, Segovia, Soesterberg, Trento and La Turballe. We would like to thank the or- ganizers and the institutions which supported these meetings. With pleasure we remember the special year on Real Algebraic Geometry and Quadratic Forms (Ragsquad) in Berkeley 1990/91 where an essential part of this book was written. Thanks to T.Y. Lam and R. Robson. We are indepted to our Departments: Universidad Complutense de Madrid and WestfiiJische Wilhelms-Universitiit Munster, as well as the D.A.A.D. and the D.G.I.C.y'T .. It is not possible to mention here all colleagues and friends who showed permanent interest in the project. They encouraged us to continue and com- plete this work. In particular, we are obliged to Jacek Bochnak, Mike Buchner, Michel Coste and Claus Scheiderer for proofreading and helpful suggestions. While the work was still in progress, Manfred Knebusch used parts of our manuscript for a course on Real Algebraic Geometry. His experience con- vinced us that it was worth pursuing a fully abstract approach. We were also in permanent contact with Murray Marshall, and the reader will recognize the mutual influence of ideas. We are also indebted to Professor Reinhold Remmert and to the Springer- Verlag for publishing the book in this series.
Topology is a relatively young and very important branch of mathematics. It studies properties of objects that are preserved by deformations, twistings, and stretchings, but not tearing. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. There is hardly an area of mathematics that does not make use of topological results and concepts. The importance of topological methods for different areas of physics is also beyond doubt. They are used in field theory and general relativity, in the physics of low temperatures, and in modern quantum theory. The book is well suited not only as preparation for students who plan to take a course in algebraic topology but also for advanced undergraduates or beginning graduates interested in finding out what topology is all about. The book has more than 200 problems, many examples, and over 200 illustrations.
This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.
This is the first monograph to exclusively treat Kac-Moody (K-M) groups, a standard tool in mathematics and mathematical physics. K-M Lie algebras were introduced in the mid-sixties independently by V. Kac and R. Moody, generalizing finite-dimensional semisimple Lie algebras. K-M theory has since undergone tremendous developments in various directions and has profound connections with a number of diverse areas, including number theory, combinatorics, topology, singularities, quantum groups, completely integrable systems, and mathematical physics. This comprehensive, well-written text moves from K-M Lie algebras to the broader K-M Lie group setting, and focuses on the study of K-M groups and their flag varieties. In developing K-M theory from scratch, the author systematically leads readers to the forefront of the subject, treating the algebro-geometric, topological, and representation-theoretic aspects of the theory. Most of the material presented here is not available anywhere in the book literature.{\it Kac--Moody Groups, their Flag Varieties and Representation Theory} is suitable for an advanced graduate course in representation theory, and contains a number of examples, exercises, challenging open problems, comprehensive bibliography, and index. Research mathematicians at the crossroads of representation theory, geometry, and topology will learn a great deal from this text; although the book is devoted to the general K-M case, those primarily interested in the finite-dimensional case will also benefit. No prior knowledge of K-M Lie algebras or of (finite-dimensional) algebraic groups is required, but some basic knowledge would certainly be helpful. For the reader's convenience some of the basic results needed from other areas, including ind-varieties, pro-algebraic groups and pro-Lie algebras, Tits systems, local cohomology, equivariant cohomology, and homological algebra are included.
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe- matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath- ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re- search of the University of Bonn in collaboration with the Sonderforschungs- bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu- ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful- kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X", if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.
This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.
After Pyatetski-Shapiro[PS1] and Satake [Sa1] introduced, independent of one another, an early form of the Jacobi Theory in 1969 (while not naming it as such), this theory was given a de?nite push by the book The Theory of Jacobi Forms by Eichler and Zagier in 1985. Now, there are some overview articles describing the developments in the theory of the Jacobigroupandits autom- phic forms, for instance by Skoruppa[Sk2], Berndt [Be5] and Kohnen [Ko]. We refertotheseformorehistoricaldetailsandmanymorenamesofauthorsactive inthistheory,whichstretchesnowfromnumbertheoryandalgebraicgeometry to theoretical physics. But let us only brie?y indicate several- sometimes very closely related - topics touched by Jacobi theory as we see it: * ?eldsofmeromorphicandrationalfunctionsontheuniversalellipticcurve resp. universal abelian variety * structure and projective embeddings of certain algebraic varieties and homogeneous spaces * correspondences between di?erent kinds of modular forms * L-functions associated to di?erent kinds of modular forms and autom- phic representations * induced representations * invariant di?erential operators * structure of Hecke algebras * determination of generalized Kac-Moody algebras and as a ? nal goal related to the here ?rst mentioned * mixed Shimura varieties and mixed motives. Now, letting completely aside the arithmetical and algebraic geometrical - proach to Jacobi forms developed and instrumentalized by Kramer [Kr], we ix x Introduction will treat here a certain representation theoretic point of view for the Jacobi theory parallel to the theory of Jacquet-Langlands [JL] for GL(2) as reported by Godement [Go2], Gelbart [Ge1] and, recently, Bump [Bu].
Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
The present volume contains, together with numerous addition and extensions, the course of lectures which I gave at Pavia (26 September till 5 October 1955) by invitation of the "Centro Internazionale Mate matico Estivo". The treatment has the character of a monograph, and presents various novel features, both in form and in substance; these are indicated in the notes which will be found at the beginning and end of each chapter, Of the nine parts into which the work is divided, the first four are essentially differential in character, the next three deal with algebraic geometry, while the last two are concerned with certain aspects of the theory of differential equations and of correspondences between topo logical varieties. A glance at the index will suffice to give a more exact idea of the range and variety of the contents, whose chief characteristic is that of establishing suggestive and sometimes unforeseen relations between apparently diverse subjects (e. g. differential geometry in the small and also in the large, algebraic geometry, function theory, topo logy, etc. ); prominence is given throughout to the geometrical view point, and tedious calculations are as far as possible avoided. The exposition has been planned so that it can be followed without much difficulty even by readers who have no special knowledge of the subjects treated.
A recent paper on subfactors of von Neumann factors has stimulated much research in von Neumann algebras. It was discovered soon after the appearance of this paper that certain algebras which are used there for the analysis of subfactors could also be used to define a new polynomial invariant for links. Recent efforts to understand the fundamental nature of the new link invariants has led to connections with invariant theory, statistical mechanics and quantum theory. In turn, the link invariants, the notion of a quantum group, and the quantum Yang-Baxter equation have had a great impact on the study of subfactors. Our subject is certain algebraic and von Neumann algebraic topics closely related to the original paper. However, in order to promote, in a modest way, the contact between diverse fields of mathematics, we have tried to make this work accessible to the broadest audience. Consequently, this book contains much elementary expository material.
Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.
The main object of this book is to reorient and revitalize classical geometry in a way that will bring it closer to the mainstream of contemporary mathematics. The postulational basis of the subject will be radically revised in order to construct a broad-scale and conceptually unified treatment. The familiar figures of classical geometry-points, segments, lines, planes, triangles, circles, and so on-stem from problems in the physical world and seem to be conceptually unrelated. However, a natural setting for their study is provided by the concept of convex set, which is compara tively new in the history of geometrical ideas. The familiarfigures can then appear as convex sets, boundaries of convex sets, or finite unions of convex sets. Moreover, two basic types of figure in linear geometry are special cases of convex set: linear space (point, line, and plane) and halfspace (ray, halfplane, and halfspace). Therefore we choose convex set to be the central type of figure in our treatment of geometry. How can the wealth of geometric knowledge be organized around this idea? By defini tion, a set is convex if it contains the segment joining each pair of its points; that is, if it is closed under the operation of joining two points to form a segment. But this is precisely the basic operation in Euclid."
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century.
In the Fall of 1975 we started a joint project with the ultimate goal of topo logically classifying real algebraic sets. This has been a long happy collaboration (c.f., [K2)). In 1985 while visiting M.S.R.1. we organized and presented our classification results up to that point in the M.S.R.1. preprint series [AK14] -[AK17]. Since these results are interdependent and require some prerequisites as well as familiarity with real algebraic geometry, we decided to make them self contained by presenting them as a part of a book in real algebraic geometry. Even though we have not arrived to our final goal yet we feel that it is time to introduce them in a self contained coherent version and demonstrate their use by giving some applications. Chapter I gives the overview of the classification program. Chapter II has all the necessary background for the rest of the book, which therefore can be used as a course in real algebraic geometry. It starts with the elementary properties of real algebraic sets and ends with the recent solution of the Nash Conjecture. Chapter III and Chapter IV develop the theory of resolution towers. Resolution towers are basic topologically defined objects generalizing the notion of manifold.
This book constitutes the thoroughly refereed post-conference proceedings of the China-Japan Joint Conference on Computational Geometry, Graphs and Applications, CGGA 2010, held in Dalian, China, in November 2010. The 23 revised full papers presented were carefully selected during two rounds of reviewing and improvement from numerous submissions. All aspects of computational and discrete geometry, graph theory, graph algorithms, and their applications are covered.
Based on a graduate course given at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The clear and straightforward presentation features many illustrations, and provides complete proofs for most theorems. The material requires only linear algebra as a prerequisite, but takes the reader quickly from the basics to topics of recent research, including a number of unanswered questions. The lectures - introduce the basic facts about polytopes, with an emphasis on the methods that yield the results (Fourier-Motzkin elimination, Schlegel diagrams, shellability, Gale transforms, and oriented matroids) - discuss important examples and elegant constructions (cyclic and neighborly polytopes, zonotopes, Minkowski sums, permutahedra and associhedra, fiber polytopes, and the Lawrence construction) - show the excitement of current work in the field (Kalai's new diameter bounds, construction of non-rational polytopes, the Bohne-Dress tiling theorem, the upper-bound theorem), and nonextendable shellings) They should provide interesting and enjoyable reading for researchers as well as students.
The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties. This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem. The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of D-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed. I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam bridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.
Als ich 1945 in MUnster zu studieren begann, war van dec Waerdens "Mo- deme Algebra" eines dec wenigen Bticher, die ich mir in diesen schwierigen Zeiten leihen konnte. Wie vielen Studenten so war also auch mir . ,dervan dec Waerden" vertraut von Anfang des Studiums an. lch lernte van dec Waerden einige Jahre spaler kennen, und er sagte miT, wie merkwiirdig es sei, daB alle Mathematiker ibn wegen dieses Buches kennen, das Vorlesungen von Emil Artin und Emmy Noether benutzt, wahrend seine wirklichen mathemati- schen Leistungen gam woanders Uigen. In dem Gesprach zeigte sich dann, dall van dec Waerden seine Arheiten zur algebraischen Geometrie nnd insbe- sondere die in den Mathematischen Annalen erschienene Reihe "Zur alge- braischen Geometrie" 1 die es in weiteren Jahren his zur NT. 20 bringen sollte, fUr das Wichtigste hielt. (Etwa 30 Jahre spater war ich zu einem Essen zu Ehren der Trager des Ordens Pour Ie Merite fUr Wissenschaft und Kunste ein- geladen. Die beiden Ordenstrager van der Waerden und Elias Canetti unter- hielten sich. Canetti bedauerte, dall man ibn hauptsachlich wegen seines Bu- ches ,. Die gerettete Zunge" kenne, wahrend andere Schriften doch viet wich- tiger seien. Van der Waerden rief aus "Aber mir geht es doch gaOl genau so mit meinem Algebra-Buch". ) Van der Waerden ist ein so ungewohnlich vielseitiger Mathematiker mit bedeutenden Buchem und Arbeiten aus zahlreichen weit von einander ent* fernten Gebieten, dal3 die Entscheidung des Verlages, diese Setecta der alge- braischen Geometrie zu widmen, sicberlich nicht selbstverstiindlich war.
In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there."
The lectures contained in this book were presented at Harvard University in June 1979. The workshop at which they were presented was the third such on algebro-geometric methods. The first was held in 1973 in London and the emphasis was largely on geometric methods. The second was held at Ames Research Center-NASA in 1976. There again the emphasis was on geometric methods, but algebraic geometry was becoming a dominant theme. In the two years after the Ames meeting there was tremendous growth in the applications of algebraic geometry to systems theory and it was becoming clear that much of the algebraic systems theory was very closely related to the geometric systems theory. On this basis we felt that this was the right time to devote a workshop to the applications of algebra and algebraic geometry to linear systems theory. The lectures contained in this volume represent all but one of the tutorial lectures presented at the workshop. The lec ture of Professor Murray Wonham is not contained in this volume and we refer the interested to the archival literature. This workshop was jointly sponsored by a grant from Ames Research Center-NASA and a grant from the Advanced Study Institute Program of NATO. We greatly appreciate the financial support rendered by these two organizations. The American Mathematical Society hosted this meeting as part of their Summer Seminars in Applied Mathematics and will publish the companion volume of con tributed papers."
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. |
![]() ![]() You may like...
Cognitive Aspects of Human-Computer…
T. L. Nyerges, D.M. Mark, …
Hardcover
R5,838
Discovery Miles 58 380
Networked Control Under Communication…
Kun Liu, Emilia Fridman, …
Hardcover
R3,636
Discovery Miles 36 360
Agent-Based Models and Complexity…
Liliana Perez, Eun-Kyeong Kim, …
Hardcover
R4,348
Discovery Miles 43 480
Image Texture Analysis - Foundations…
Chih-Cheng Hung, Enmin Song, …
Hardcover
R1,914
Discovery Miles 19 140
Superfans - Power, Technology, and Money…
Emily Gumbulevich
Hardcover
Fluid-Structure-Sound Interactions and…
Yu Zhou, Yang Liu, …
Hardcover
R6,853
Discovery Miles 68 530
Algebraic Monoids, Group Embeddings, and…
Mahir Can, Zhenheng Li, …
Hardcover
R3,738
Discovery Miles 37 380
Nonlinear Combinatorial Optimization
Dingzhu Du, Panos M. Pardalos, …
Hardcover
|