![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the "Nemethi60: Geometry and Topology of Singularities" conference held at the Alfred Renyi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor Andras Nemethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This book collects original peer-reviewed contributions to the conferences organised by the international research network "Minimal surfaces: Integrable Systems and Visualization" financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.
This book lays out the theory of Mordell-Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell-Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell-Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface.Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell-Weil lattices. Finally, the book turns to the rank problem-one of the key motivations for the introduction of Mordell-Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field - this book hopes to inspire a new generation of graduate students and researchers in his tradition.
The ultimate goal of this book is to explain that the Grothendieck-Teichmuller group, as defined by Drinfeld in quantum group theory, has a topological interpretation as a group of homotopy automorphisms associated to the little 2-disc operad. To establish this result, the applications of methods of algebraic topology to operads must be developed. This volume is devoted primarily to this subject, with the main objective of developing a rational homotopy theory for operads. The book starts with a comprehensive review of the general theory of model categories and of general methods of homotopy theory. The definition of the Sullivan model for the rational homotopy of spaces is revisited, and the definition of models for the rational homotopy of operads is then explained. The applications of spectral sequence methods to compute homotopy automorphism spaces associated to operads are also explained. This approach is used to get a topological interpretation of the Grothendieck-Teichmuller group in the case of the little 2-disc operad. This volume is intended for graduate students and researchers interested in the applications of homotopy theory methods in operad theory. It is accessible to readers with a minimal background in classical algebraic topology and operad theory.
This book presents important contributions to modern theories concerning the distribution theory applied to convex analysis (convex functions, functions of lower semicontinuity, the subdifferential of a convex function). The authors prove several basic results in distribution theory and present ordinary differential equations and partial differential equations by providing generalized solutions. In addition, the book deals with Sobolev spaces, which presents aspects related to variation problems, such as the Stokes system, the elasticity system and the plate equation. The authors also include approximate formulations of variation problems, such as the Galerkin method or the finite element method. The book is accessible to all scientists, and it is especially useful for those who use mathematics to solve engineering and physics problems. The authors have avoided concepts and results contained in other books in order to keep the book comprehensive. Furthermore, they do not present concrete simplified models and pay maximal attention to scientific rigor.
Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry. This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties. This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems. Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Bohning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov"
Mathematics is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications-some quite surprising-in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.
This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincare Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes' Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss-Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow's Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Although twistor theory originated as an approach to the unification of quantum theory and general relativity, twistor correspondences and their generalizations have provided powerful mathematical tools for studying problems in differential geometry, nonlinear equations, and representation theory. At the same time, the theory continues to offer promising new insights into the nature of quantum theory and gravitation.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization. After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those to scattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion. In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.
This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theory that sustains the duality between algebraic geometry and commutative algebra to the noncommutative level.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi-Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi-Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi-Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.
This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions. The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
Algebraic curves and compact Riemann surfaces comprise the most developed and arguably the most beautiful portion of algebraic geometry. However, the majority of books written on the subject discuss algebraic curves and compact Riemann surfaces separately, as parts of distinct general theories. Most texts and university courses on curve theory generally conclude with the Riemann-Roch theorem, despite the fact that this theorem is the gateway to some of the most fascinating results in the theory of algebraic curves.This book is based on a six-week series of lectures presented by the author to third- and fourth-year undergraduates and graduate students at Beijing University in 1982. The lectures began with minimal technical requirements (a working knowledge of elementary complex function theory and algebra together with some exposure to topology of compact surfaces) and proceeded directly to the Riemann-Roch and Abel theorems. This book differs from a number of recent books on this subject in that it combines analytic and geometric methods at the outset, so that the reader can grasp the basic results of the subject. Although such modern techniques of sheaf theory, cohomology, and commutative algebra are not covered here, the book provides a solid foundation to proceed to more advanced texts in general algebraic geometry, complex manifolds, and Riemann surfaces, as well as algebraic curves. Containing numerous exercises and two exams, this book would make an excellent introductory text.
This monograph strives to introduce a solid foundation on the usage of Groebner bases in ring theory by focusing on noncommutative associative algebras defined by relations over a field K. It also reveals the intrinsic structural properties of Groebner bases, presents a constructive PBW theory in a quite extensive context and, along the routes built via the PBW theory, the book demonstrates novel methods of using Groebner bases in determining and recognizing many more structural properties of algebras, such as the Gelfand-Kirillov dimension, Noetherianity, (semi-)primeness, PI-property, finiteness of global homological dimension, Hilbert series, (non-)homogeneous p-Koszulity, PBW-deformation, and regular central extension.With a self-contained and constructive Groebner basis theory for algebras with a skew multiplicative K-basis, numerous illuminating examples are constructed in the book for illustrating and extending the topics studied. Moreover, perspectives of further study on the topics are prompted at appropriate points. This book can be of considerable interest to researchers and graduate students in computational (computer) algebra, computational (noncommutative) algebraic geometry; especially for those working on the structure theory of rings, algebras and their modules (representations).
"Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and nonspecialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction. |
![]() ![]() You may like...
Formulating Ideas Uninterrupted
A P Oliveira, Angela Lee
Hardcover
The British Army and the First World War
Ian Beckett, Timothy Bowman, …
Hardcover
R2,216
Discovery Miles 22 160
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
![]()
|