![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This is a monograph that details the use of Siegel's method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph.
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
This volume contains the proceedings of the International Conference on Algebra and Related Topics, held from July 2-5, 2018, at Mohammed V University, Rabat, Morocco. Linear reserver problems demand the characterization of linear maps between algebras that leave invariant certain properties or certain subsets or relations. One of the most intractable unsolved problems in is Kaplansky's conjecture: every surjective unital invertibility preserving linear map between two semisimple Banach algebras is a Jordan homomorphism. Recently, there has been an upsurge of interest in nonlinear preservers, where the maps studied are no longer assumed linear but instead a weak algebraic condition is somehow involved through the preserving property. This volume contains several articles on various aspects of preservers, including such topics as Jordan isomorphisms, Aluthge transform, joint numerical radius on $C^*$-algebras, advertible complete algebras, and Gelfand-Mazur algebras. The volume also contains a survey on recent progress on local spectrum-preserving maps. Several articles in the volume present results about weighted spaces and algebras of holomorphic or harmonic functions, including biduality in weighted spaces of analytic functions, interpolation in the analytic Wiener algebra, and weighted composition operators on non-locally convex weighted spaces.
The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. ** . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it * To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.
This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry. After a concise introduction to Groebner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson-Schensted-Knuth correspondence, which provide a description of the Groebner bases of determinantal ideals, yielding homological and enumerative theorems on determinantal rings. Sagbi bases then lead to the introduction of toric methods. In positive characteristic, the Frobenius functor is used to study properties of singularities, such as F-regularity and F-rationality. Castelnuovo-Mumford regularity, an important complexity measure in commutative algebra and algebraic geometry, is introduced in the general setting of a Noetherian base ring and then applied to powers and products of ideals. The remainder of the book focuses on algebraic geometry, where general vanishing results for the cohomology of line bundles on flag varieties are presented and used to obtain asymptotic values of the regularity of symbolic powers of determinantal ideals. In characteristic zero, the Borel-Weil-Bott theorem provides sharper results for GL-invariant ideals. The book concludes with a computation of cohomology with support in determinantal ideals and a survey of their free resolutions. Determinants, Groebner Bases and Cohomology provides a unique reference for the theory of determinantal ideals and varieties, as well as an introduction to the beautiful mathematics developed in their study. Accessible to graduate students with basic grounding in commutative algebra and algebraic geometry, it can be used alongside general texts to illustrate the theory with a particularly interesting and important class of varieties.
This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. These expositions will be valuable to both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all. The first part of the book is primarily concerned with introducing Macaulay2, whereas the second part emphasizes the mathematics.
Author S.A. Stepanov thoroughly investigates the current state of the theory of Diophantine equations and its related methods. Discussions focus on arithmetic, algebraic-geometric, and logical aspects of the problem. Designed for students as well as researchers, the book includes over 250 excercises accompanied by hints, instructions, and references. Written in a clear manner, this text does not require readers to have special knowledge of modern methods of algebraic geometry.
This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context. Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean representable complexes.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Higher-dimensional algebraic geometry studies the classification theory of algebraic varieties. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The author¿s goal is to provide an easily accessible introduction to the subject. The book covers preparatory and standard definitions and results, moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Mori¿s minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction to graduate students and researchers.
"Presents the proceedings of the recently held Third International Conference on Commutative Ring Theory in Fez, Morocco. Details the latest developments in commutative algebra and related areas-featuring 26 original research articles and six survey articles on fundamental topics of current interest. Examines wide-ranging developments in commutative algebra, together with connections to algebraic number theory and algebraic geometry."
The appearance of Gruenbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way. --Gil Kalai, The Hebrew University of Jerusalem The original book of Gruenbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day. --Louis J. Billera, Cornell University The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again. --Peter McMullen, University College London The combinatorial study of convex polytopes is today an extremely active and healthy area of mathematical research, and the number and depth of its relationships to other parts of mathematics have grown astonishingly since Convex Polytopes was first published in 1966. The new edition contains the full text of the original and the addition of notes at the end of each chapter. The notes are intended to bridge the thirty five years of intensive research on polytopes that were to a large extent initiated, guided, motivated and fuelled by the first edition of Convex Polytopes. The new material provides a direct guide to more than 400 papers and books that have appeared since 1967. Branko Grünbaum is Professor of Mathematics at the University of Washington.
The book deals with fundamental structural aspects of algebraic and simple groups, Coxeter groups and the related geometries and buildings. All contributing authors are very active researchers in the topics related to the theme of the book. Some of the articles provide the latest developments in the subject; some provide an overview of the current status of some important problems in this area; some survey an area highlighting the current developments; and some provide an exposition of an area to collect problems and conjectures. It is hoped that these articles would be helpful to a beginner to start independent research on any of these topics, as well as to an expert to know some of the latest developments or to consider some problems for investigation.
The Conference on Algebraic Geometry, held in Berlin 9-15 March 1988, was organised by the Sektion Mathematik of the Humboldt-Universitat. The organising committee consisted of H. Kurke, W. Kleinert, G. Pfister and M. Roczen. The Conference is one in a series organised by the Humboldt-Universitat at regular intervals of two or three years, with the purpose of providing a meeting place for mathematicians from eastern and western countries. The present volume contains elaborations of part of the lectures presented at the Conference and some articles on related subjects. All papers were subject to the regular refereeing procedure of Compositio Mathematica, and H. Kurke acted as a guest editor of this journal. The papers focus on actual themes in algebraic geometry and singularity theory, such as vector bundles, arithmetical algebraic geometry, intersection theory, moduli and Hodge theory. We are grateful to all those who, by their hospitality, their presence at the Con ference, their support or their written contributions, have made this Conference to a success. The editors Compositio Mathematica 76: viii, 1990."
In the fall of 1992 I was invited by Professor Changho Keem to visit Seoul National University and give a series of talks. I was asked to write a monograph based on my talks, and the result was published by the Global Analysis Research Center of that University in 1994. The monograph treated deficiency modules and liaison theory for complete intersections. Over the next several years I continually thought of improvements and additions that I would like to make to the manuscript, and at the same time my research led me in directions that gave me a fresh perspective on much of the material, especially in the direction of liaison theory. This re sulted in a dramatic change in the focus of this manuscript, from complete intersections to Gorenstein ideals, and a substantial amount of additions and revisions. It is my hope that this book now serves not only as an introduction to a beautiful subject, but also gives the reader a glimpse at very recent developments and an idea of the direction in which liaison theory is going, at least from my perspective. One theme which I have tried to stress is the tremendous amount of geometry which lies at the heart of the subject, and the beautiful interplay between algebra and geometry. Whenever possible I have given remarks and examples to illustrate this interplay, and I have tried to phrase the results in as geometric a way as possible."
This volume features contributions from the Women in Commutative Algebra (WICA) workshop held at the Banff International Research Station (BIRS) from October 20-25, 2019, run by the Pacific Institute of Mathematical Sciences (PIMS). The purpose of this meeting was for groups of mathematicians to work on joint research projects in the mathematical field of Commutative Algebra and continue these projects together long-distance after its close. The chapters include both direct results and surveys, with contributions from research groups and individual authors. The WICA conference was the first of its kind in the large and vibrant area of Commutative Algebra, and this volume is intended to showcase its important results and to encourage further collaboration among marginalized practitioners in the field. It will be of interest to a wide range of researchers, from PhD students to senior experts.
Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use. Although analysis does not require an exhaustive knowledge of algebra, even of all the algebraic technique so far discovered, still there are topics whose con sideration prepares a student for a deeper understanding. However, in the ordinary treatise on the elements of algebra, these topics are either completely omitted or are treated carelessly. For this reason, I am cer tain that the material I have gathered in this book is quite sufficient to remedy that defect. I have striven to develop more adequately and clearly than is the usual case those things which are absolutely required for analysis. More over, I have also unraveled quite a few knotty problems so that the reader gradually and almost imperceptibly becomes acquainted with the idea of the infinite. There are also many questions which are answered in this work by means of ordinary algebra, although they are usually discussed with the aid of analysis. In this way the interrelationship between the two methods becomes clear."
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Exploring the connections between arithmetic and geometric properties of algebraic varieties has been the object of much fruitful study for a long time, especially in the case of curves. The aim of the Summer School and Conference on "Higher Dimensional Varieties and Rational Points" held in Budapest, Hungary during September 2001 was to bring together students and experts from the arithmetic and geometric sides of algebraic geometry in order to get a better understanding of the current problems, interactions and advances in higher dimension. The lecture series and conference lectures assembled in this volume give a comprehensive introduction to students and researchers in algebraic geometry and in related fields to the main ideas of this rapidly developing area.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
Vladimir Abramovich Rokhlin (8/23/1919-12/03/1984) was one of the leading Russian mathematicians of the second part of the twentieth century. His main achievements were in algebraic topology, real algebraic geometry, and ergodic theory. The volume contains the proceedings of the Conference on Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial, held from August 19-23, 2019, at The Euler International Mathematics Institute and the Steklov Institute of Mathematics, St. Petersburg, Russia. The articles deal with topology of manifolds, theory of cobordisms, knot theory, geometry of real algebraic manifolds and dynamical systems and related topics. The book also contains Rokhlin's biography supplemented with copies of actual very interesting documents.
The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinoya Rorbuer, Svolvaer in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kahler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kahler manifolds.
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. "Rational Points on Elliptic Curves" streses this interplay as it develops the basic theory, thereby providing an opportunity for advance undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make "Rational Points on Elliptic Curves" an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. |
![]() ![]() You may like...
The Poultry and Egg Situation…
United States Department of Agriculture
Paperback
R364
Discovery Miles 3 640
Foreign Crops and Markets, Vol. 47…
United States Department of Agriculture
Paperback
R377
Discovery Miles 3 770
|