![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
Here is a deformation theory for degenerations of complex curves; specifically, discussing deformations which induce splitting of the singular fiber of a degeneration. The author constructs a deformation of the degeneration in such a way that a subdivisor is "barked," or peeled off from the singular fiber. "Barking deformations" are related to deformations of surface singularities, in particular, cyclic quotient singularities, as well as the mapping class groups of Riemann surfaces via monodromies.
Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.
This book presents the thoroughly refereed post-proceedings of the 5th International Workshop on Automated Deduction in Geometry, ADG 2004, held at Gainesville, FL, USA in September 2004. The 12 revised full papers presented aurvey current issues theoretical and methodological topics as well as applications thereof - in particular automated geometry theorem proving, automated geometry problem solving, problems of dynamic geometry, and an object-oriented language for geometric objects.
The field of convex geometry has become a fertile subject of mathematical activity in the past few decades. This exposition, examining in detail those topics in convex geometry that are concerned with Euclidean space, is enriched by numerous examples, illustrations, and exercises, with a good bibliography and index. The theory of intrinsic volumes for convex bodies, along with the Hadwiger characterization theorems, whose proofs are based on beautiful geometric ideas such as the rounding theorems and the Steiner formula, are treated in Part 1. In Part 2 the reader is given a survey on curvature and surface area measures and extensions of the class of convex bodies. Part 3 is devoted to the important class of star bodies and selectors for convex and star bodies, including a presentation of two famous problems of geometric tomography: the Shephard problem and the Busemanna "Petty problem. Selected Topics in Convex Geometry requires of the reader only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory. The book can be used in the classroom setting for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization. Researchers in pure and applied areas will also benefit from the book.
This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading. algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves; presents residue theory in the affine plane and its applications to intersection theory; methods of proof for the Riemann-Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings; and examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook.
The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.
Algebraic Geometry often seems very abstract, but in fact it is full of concrete examples and problems. This side of the subject can be approached through the equations of a variety, and the syzygies of these equations are a necessary part of the study. This book is the first textbook-level account of basic examples and techniques in this area. It illustrates the use of syzygies in many concrete geometric considerations, from interpolation to the study of canonical curves. The text has served as a basis for graduate courses by the author at Berkeley, Brandeis, and in Paris. It is also suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. As an aid to the reader, the appendices provide summaries of local cohomology and commutative algebra, tying together examples and major results from a wide range of topics.
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
Devised in the 19th century, Gauss and Jacobi Sums are classical formulas that form the basis for contemporary research in many of today's sciences. This book offers readers a solid grounding on the origin of these abstract, general theories. Though the main focus is on Gauss and Jacobi, the book does explore other relevant formulas, including Cauchy.
Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields, this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.
This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.
The NATO Advanced Study Institute "Axiomatic, enriched and rna tivic homotopy theory" took place at the Isaac Newton Institute of Mathematical Sciences, Cambridge, England during 9-20 September 2002. The Directors were J.P.C.Greenlees and I.Zhukov; the other or ganizers were P.G.Goerss, F.Morel, J.F.Jardine and V.P.Snaith. The title describes the content well, and both the event and the contents of the present volume reflect recent remarkable successes in model categor ies, structured ring spectra and homotopy theory of algebraic geometry. The ASI took the form of a series of 15 minicourses and a few extra lectures, and was designed to provide background, and to bring the par ticipants up to date with developments. The present volume is based on a number of the lectures given during the workshop. The ASI was the opening workshop of the four month programme "New Contexts for Stable Homotopy Theory" which explored several themes in greater depth. I am grateful to the Isaac Newton Institute for providing such an ideal venue, the NATO Science Committee for their funding, and to all the speakers at the conference, whether or not they were able to contribute to the present volume. All contributions were refereed, and I thank the authors and referees for their efforts to fit in with the tight schedule. Finally, I would like to thank my coorganizers and all the staff at the Institute for making the ASI run so smoothly. J.P.C.GREENLEES."
This book is the result of reworking part of a rather lengthy course of lectures of which we delivered several versions at the Leningrad and Moscow Universities. In these lectures we presented an introduction to the fundamental topics of topology: homology theory, homotopy theory, theory of bundles, and topology of manifolds. The structure of the course was well determined by the guiding term elementary topology, whose main significance resides in the fact that it made us use a rather simple apparatus. tn this book we have retained {hose sections of the course where algebra plays a subordinate role. We plan to publish the more algebraic part of the lectures as a separate book. Reprocessing the lectures to produce the book resulted in the profits and losses inherent in such a situation: the rigour has increased to the detriment of the intuitiveness, the geometric descriptions have been replaced by formulas needing interpretations, etc. Nevertheless, it seems to us tha.t the book retains the main qualities of our lectures: their elementary, systematic, and pedagogical features. The preparation of the reader is assumed to be limi ted to the usual knowledge of set .theory, algebra, and calculus which mathematics students should master after the first year and a half of studies. The exposition is accompanied by examples and exercises. We hope that the book can be used as a topology textbook."
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders," we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process."
A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S.The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
The second volume of this modern account of Kaehlerian geometry and Hodge theory starts with the topology of families of algebraic varieties. The main results are the generalized Noether-Lefschetz theorems, the generic triviality of the Abel-Jacobi maps, and most importantly, Nori's connectivity theorem, which generalizes the above. The last part deals with the relationships between Hodge theory and algebraic cycles. The text is complemented by exercises offering useful results in complex algebraic geometry. Also available: Volume I 0-521-80260-1 Hardback $60.00 C
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
This book provides a self-contained exposition of the theory of plane Cremona maps, reviewing the classical theory. The book updates, correctly proves and generalises a number of classical results by allowing any configuration of singularities for the base points of the plane Cremona maps. It also presents some material which has only appeared in research papers and includes new, previously unpublished results. This book will be useful as a reference text for any researcher who is interested in the topic of plane birational maps.
The present book is devoted to a study of relative Prüfer rings and Manis valuations, with an eye to application in real and p-adic geometry. If one wants to expand on the usual algebraic geometry over a non-algebraically closed base field, e.g. a real closed field or p-adically closed field, one typically meets lots of valuation domains. Usually they are not discrete and hence not noetherian. Thus, for a further develomemt of real algebraic and real analytic geometry in particular, and certainly also rigid analytic and p-adic geometry, new chapters of commutative algebra are needed, often of a non-noetherian nature. The present volume presents one such chapter.
Lie linksbetweentorus and Toroidal arethe complex missing groups any groups such and of Lie as complex pseudoconvexity groups. Manyphenomena groups the of beunderstood thestructure can onlythrough concept cohomologygroups of different behavior ofthe oftoroidal The cohomology complex groups groups. the of their toroidal Lie be characterized can by properties groups - groups in their centers. pearing book. So the oldest have not been treated in a Toroidal systematically groups in it who worked in this field and the mathematician youngest working living aboutthemain results these decidedto a concerning comprehensivesurvey give and to discuss problems. open groups of the torus As the Toroidal are generalization groups. groups non-compact and Grauert. As in the sense ofAndreotti manifolds are convex complex they others have similarbehaviorto Lie someofthem a complextori, complex groups whencec- different with for non-Hausdorff are example cohomology groups, mustbe used. newmethods pletely of is to describe the fundamental The aim of these lecture notes properties the reductiontheorem toroidal As a result ofthe qua- meromorphic groups. basic ends inthethird varieties of interest.Their Abelian are special description MainTheorem. withthe chapter wide atthe - ofSOPHus LIE -wasintroducedtoa This inhonour public theory " 1999. after Lie" in on Conference 100Years Leipzig, July 8-9, Sophus HUMBOLDT wishes to thank the ALEXANDER VON The first-named author FOUNDATION for partial support. December 1998 Hannoverand Toyama, YukitakaAbeandKlaus Kopfermann Contents 1 Introduction ..................................................... of Toroidal 3 1. The Concept Groups ............................. 1.1 and toroidal coordinates 3 Irrationality ........................ Toroidal 3 ........................................... groups 7 Complex homomorphisms .................................. Toroidal coordinates and C*n-q -fibre bundles 9 .................
It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld, su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O, the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws, weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e DEGREES(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the s
Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.
This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperk hler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
An up-to-date report on the current status of important research topics in algebraic geometry and its applications, such as computational algebra and geometry, singularity theory algorithms, numerical solutions of polynomial systems, coding theory, communication networks, and computer vision. Contributions on more fundamental aspects of algebraic geometry include expositions related to counting points on varieties over finite fields, Mori theory, linear systems, Abelian varieties, vector bundles on singular curves, degenerations of surfaces, and mirror symmetry of Calabi-Yau manifolds. |
![]() ![]() You may like...
Become A Better Writer - How To Write…
Donald Powers, Greg Rosenberg
Paperback
The Confessions of J. J. Rousseau - With…
Jean Jacques Rousseau
Paperback
R562
Discovery Miles 5 620
|