![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the "folklore". In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in other parts of mathematics, most prominently in representation theory. This volume develops deformation theory, Lie theory and the theory of algebroids in the context of derived algebraic geometry. To that end, it introduces the notion of inf-scheme, which is an infinitesimal deformation of a scheme and studies ind-coherent sheaves on such. As an application of the general theory, the six-functor formalism for D-modules in derived geometry is obtained. This volume consists of two parts. The first part introduces the notion of ind-scheme and extends the theory of ind-coherent sheaves to inf-schemes, obtaining the theory of D-modules as an application. The second part establishes the equivalence between formal Lie group(oids) and Lie algebr(oids) in the category of ind-coherent sheaves. This equivalence gives a vast generalization of the equivalence between Lie algebras and formal moduli problems. This theory is applied to study natural filtrations in formal derived geometry generalizing the Hodge filtration.
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.
The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups. This is an instance of a positive answer to the generalized inverse problem of Galois theory. Adopting both an arithmetic and probabilistic approach, the book carefully sets out the preliminary material needed to prove the main theorem and its supporting results. In addition, it includes a description of Melnikov's construction of free products of profinite groups and, for the first time in book form, an account of a generalization of the theory of free products of profinite groups and their subgroups. The book will be of interest to researchers in field arithmetic, Galois theory and profinite groups.
This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein's theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein's original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.
This book provides an overview of the latest progress on rationality questions in algebraic geometry. It discusses new developments such as universal triviality of the Chow group of zero cycles, various aspects of stable birationality, cubic and Fano fourfolds, rationality of moduli spaces and birational invariants of group actions on varieties, contributed by the foremost experts in their fields. The question of whether an algebraic variety can be parametrized by rational functions of as many variables as its dimension has a long history and played an important role in the history of algebraic geometry. Recent developments in algebraic geometry have made this question again a focal point of research and formed the impetus to organize a conference in the series of conferences on the island of Schiermonnikoog. The book follows in the tradition of earlier volumes, which originated from conferences on the islands Texel and Schiermonnikoog.
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon's program of braid monodromy factorization. By focusing on how the research on one specific curve changed during the 20th century, the author provides insights concerning the dynamics of epistemic objects and configurations of mathematical research. It is in this sense that the book offers to take the branch curve as a cross-section through the history of algebraic geometry of the 20th century, considering this curve as an intersection of several research approaches and methods. Researchers in the history of science and of mathematics as well as mathematicians will certainly find this book interesting and appealing, contributing to the growing research on the history of algebraic geometry and its changing images.
This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn-Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula. In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known.
A First Course in Computational Algebraic Geometry is designed for young students with some background in algebra who wish to perform their first experiments in computational geometry. Originating from a course taught at the African Institute for Mathematical Sciences, the book gives a compact presentation of the basic theory, with particular emphasis on explicit computational examples using the freely available computer algebra system, Singular. Readers will quickly gain the confidence to begin performing their own experiments.
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the second of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM "International Meeting on Numerical Semigroups", held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.
This book discusses regular powers and symbolic powers of ideals from three perspectives- algebra, combinatorics and geometry - and examines the interactions between them. It invites readers to explore the evolution of the set of associated primes of higher and higher powers of an ideal and explains the evolution of ideals associated with combinatorial objects like graphs or hypergraphs in terms of the original combinatorial objects. It also addresses similar questions concerning our understanding of the Castelnuovo-Mumford regularity of powers of combinatorially defined ideals in terms of the associated combinatorial data. From a more geometric point of view, the book considers how the relations between symbolic and regular powers can be interpreted in geometrical terms. Other topics covered include aspects of Waring type problems, symbolic powers of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and the persistence of associated primes.
An introduction to abstract algebraic geometry, with the only
prerequisites being results from commutative algebra, which are
stated as needed, and some elementary topology. More than 400
exercises distributed throughout the book offer specific examples
as well as more specialised topics not treated in the main text,
while three appendices present brief accounts of some areas of
current research. This book can thus be used as textbook for an
introductory course in algebraic geometry following a basic
graduate course in algebra.
This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20-24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.
The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the "Nemethi60: Geometry and Topology of Singularities" conference held at the Alfred Renyi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor Andras Nemethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
This book is a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating vector algebra. Even though vector analysis is a relatively recent development in the history of mathematics, it has become a powerful and central tool in describing and solving a wide range of geometric problems. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to, among others, lines, planes, intersections, rotating vectors, and vector differentiation.
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the first of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured topics include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
This book collects original peer-reviewed contributions to the conferences organised by the international research network "Minimal surfaces: Integrable Systems and Visualization" financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
This book provides the first thorough treatment of effective results and methods for Diophantine equations over finitely generated domains. Compiling diverse results and techniques from papers written in recent decades, the text includes an in-depth analysis of classical equations including unit equations, Thue equations, hyper- and superelliptic equations, the Catalan equation, discriminant equations and decomposable form equations. The majority of results are proved in a quantitative form, giving effective bounds on the sizes of the solutions. The necessary techniques from Diophantine approximation and commutative algebra are all explained in detail without requiring any specialized knowledge on the topic, enabling readers from beginning graduate students to experts to prove effective finiteness results for various further classes of Diophantine equations. |
You may like...
Normal Partitions and Hierarchical…
Gennadiy Vladimirovich Zhizhin
Hardcover
R5,378
Discovery Miles 53 780
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,507
Discovery Miles 25 070
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,049
Discovery Miles 30 490
Categories and Representation Theory…
Hideto Asashiba
Paperback
|