![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.
Moduli theory is the study of how objects, typically in algebraic geometry but sometimes in other areas of mathematics, vary in families and is fundamental to an understanding of the objects themselves. First formalised in the 1960s, it represents a significant topic of modern mathematical research with strong connections to many areas of mathematics (including geometry, topology and number theory) and other disciplines such as theoretical physics. This book, which arose from a programme at the Isaac Newton Institute in Cambridge, is an ideal way for graduate students and more experienced researchers to become acquainted with the wealth of ideas and problems in moduli theory and related areas. The reader will find articles on both fundamental material and cutting-edge research topics, such as: algebraic stacks; BPS states and the P = W conjecture; stability conditions; derived differential geometry; and counting curves in algebraic varieties, all written by leading experts.
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmetiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that "the style is concise and the proofs (in later sections) are often demanding of the reader." To make the translation more approachable, numerous footnotes provide helpful comments.
An advanced treatment of surgery theory for graduate students and researchers Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community.
In the first two chapters we review the theory developped by Cartan, Whitney and Tognoli. Then Nullstellensatz is proved both for Stein algebras and for the algebra of real analytic functions on a C-analytic space. Here we find a relation between real Nullstellensatz and seventeenth Hilbert's problem for positive semidefinite analytic functions. Namely, a positive answer to Hilbert's problem implies a solution for the real Nullstellensatz more similar to the one for real polinomials. A chapter is devoted to the state of the art on this problem that is far from a complete answer. In the last chapter we deal with inequalities. We describe a class of semianalytic sets defined by countably many global real analytic functions that is stable under topological properties and under proper holomorphic maps between Stein spaces, that is, verifies a direct image theorem. A smaller class admits also a decomposition into irreducible components as it happens for semialgebraic sets. During the redaction some proofs have been simplified with respect to the original ones.
facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs ( 5) and one-dimensional germs (Puiseux theorem, 6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz ( 4). In the fourth chapter, a study of local structure (normal triples, 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches ( 2). The role played by the ring 0 A of an analytic germ is shown ( 4). Then, the Remmert-Stein theorem on re movable singularities is proved ( 6). The last part of the chapter deals with analytically constructible sets ( 7)."
It is impossible to imagine modern mathematics without complex numbers. Complex Numbers from A to . . . Z introduces the reader to this fascinating subject that, from the time of L. Euler, has become one of the most utilized ideas in mathematics. The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them. The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented. The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of configuration spaces associated to hyperbolic curves over algebraically closed fields of characteristic zero. The starting point of the theory of the present monograph is a combinatorial anabelian result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give purely group-theoretic characterizations of the cuspidal inertia subgroups of one-dimensional subquotients of the profinite fundamental group of a configuration space. We then turn to the study of tripod synchronization, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve induces the same outer automorphism on certain subquotients of such a fundamental group determined by tripods [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning profinite Dehn multi-twists. In the final portion of the monograph, we develop a theory of localizability, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve lift to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the etale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.
A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines."
The notes in this volume correspond to advanced courses held at the Centre de Recerca Matematica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to "p"-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at "p" that arise naturally in Galois deformation theory. The notes by Gebhard Bockle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l p and local deformations at "p" which are flat. In the last section, the results of Bockle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembele and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification."
This book is about modern algebraic geometry. The title "A Royal Road to Algebraic Geometry" is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work "Elements." Euclid is said to have answered: ""There is no royal road to geometry" " The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense" there is" a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck's theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime
"These volumes collect almost all of the research and expository papers of J.-P. Serre published in mathematical journals through 1984, as well as some of his seminar reports, and a few items not previously published. .... Throughout his writings, Serre has liberally sprinkled open questions and conjectures. Most endnotes list subsequent progress made on these questions or improvements to the main results of the papers. Some make additional comments, and a few are corrections. These endnotes alone justify the publication of the collected works. Serre is one of the masters of mathematical exposition...." --James Milne, University of Michigan, in Math Reviews
This volume contains the Proceedings of the conference "Complex and Differential Geometry 2009", held at Leibniz Universitat Hannover, September 14 - 18, 2009. It was the aim of this conference to bring specialists from differential geometry and (complex) algebraic geometry together and to discuss new developments in and the interaction between these fields. Correspondingly, the articles in this book cover a wide area of topics, ranging from topics in (classical) algebraic geometry through complex geometry, including (holomorphic) symplectic and poisson geometry, to differential geometry (with an emphasis on curvature flows) and topology.
The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry," held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Soderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour. "
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampere equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.
This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).
This book gives a comprehensive treatment of the singularities that appear in the minimal model program and in the moduli problem for varieties. The study of these singularities and the development of Mori's program have been deeply intertwined. Early work on minimal models relied on detailed study of terminal and canonical singularities but many later results on log terminal singularities were obtained as consequences of the minimal model program. Recent work on the abundance conjecture and on moduli of varieties of general type relies on subtle properties of log canonical singularities and conversely, the sharpest theorems about these singularities use newly developed special cases of the abundance problem. This book untangles these interwoven threads, presenting a self-contained and complete theory of these singularities, including many previously unpublished results.
The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work's main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces.
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers-an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Linear Algebra: Concepts and Applications is designed to be used in a first linear algebra course taken by mathematics and science majors. It provides a complete coverage of core linear algebra topics, including vectors and matrices, systems of linear equations, general vector spaces, linear transformations, eigenvalues, and eigenvectors. All results are carefully, clearly, and rigorously proven. The exposition is very accessible. The applications of linear algebra are extensive and substantial-several of those recur throughout the text in different contexts, including many that elucidate concepts from multivariable calculus. Unusual features of the text include a pervasive emphasis on the geometric interpretation and viewpoint as well as a very complete treatment of the singular value decomposition. The book includes over 800 exercises and numerous references to the author's custom software Linear Algebra Toolkit.
This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant's fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant's work. |
You may like...
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,049
Discovery Miles 30 490
Motivic Integration
Antoine Chambert-Loir, Johannes Nicaise, …
Hardcover
R3,699
Discovery Miles 36 990
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,054
Discovery Miles 30 540
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,507
Discovery Miles 25 070
|