![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > Algebraic geometry
One of the main achievements of algebraic geometry over the last 30 years is the work of Mori and others extending minimal models and the Enriques-Kodaira classification to 3-folds. This book, first published in 2000, is an integrated suite of papers centred around applications of Mori theory to birational geometry. Four of the papers (those by Pukhlikov, Fletcher, Corti, and the long joint paper Corti, Pukhlikov and Reid) work out in detail the theory of birational rigidity of Fano 3-folds; these contributions work for the first time with a representative class of Fano varieties, 3-fold hypersurfaces in weighted projective space, and include an attractive introductory treatment and a wealth of detailed computation of special cases.
This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
This book provides a gentle introduction to the foundations of Algebraic Geometry, starting from computational topics (ideals and homogeneous ideals, zero loci of ideals) up to increasingly intrinsic and abstract arguments, like 'Algebraic Varieties', whose natural continuation is a more advanced course on the theory of schemes, vector bundles and sheaf-cohomology.Valuable to students studying Algebraic Geometry and Geometry, A First Course in Algebraic Geometry and Algebraic Varieties contains around 60 solved exercises to help students thoroughly understand the theories introduced in the book. Proofs of the results are carried out in full details.Many examples are discussed which reinforces the understanding of both the theoretical elements and their consequences as well as the possible applications of the material.
Singularity theory is a broad subject with vague boundaries. It draws on many other areas of mathematics, and in turn has contributed to many areas both within and outside mathematics, in particular differential and algebraic geometry, knot theory, differential equations, bifurcation theory, Hamiltonian mechanics, optics, robotics and computer vision. This volume consists of two dozen articles from some of the best known figures in singularity theory, and it presents an up-to-date survey of research in this area.
From the reviews: "... My general impression is of a particularly nice book, with a well-balanced bibliography, recommended!"Mededelingen van Het Wiskundig Genootschap, 1995"... The authors offer here an up to date guide to the topic and its main applications, including a number of new results. It is very convenient for the reader, a carefully prepared and extensive bibliography ... makes it easy to find the necessary details when needed. The books (EMS 6 and EMS 39) describe a lot of interesting topics. ... Both volumes are a very valuable addition to the library of any mathematician or physicist interested in modern mathematical analysis."European Mathematical Society Newsletter, 1994
This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing seventeen survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A, D, E classification, centered around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants, treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.
Thorough introduction to an important area of mathematics Contains recent results Includes many exercises
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
The theory of Gröbner bases, invented by Bruno Buchberger, is a general method by which many fundamental problems in various branches of mathematics and engineering can be solved by structurally simple algorithms. The method is now available in all major mathematical software systems. This book provides a short and easy-to-read account of the theory of Gröbner bases and its applications. It is in two parts, the first consisting of tutorial lectures, beginning with a general introduction. The subject is then developed in a further twelve tutorials, written by leading experts, on the application of Gröbner bases in various fields of mathematics. In the second part there are seventeen original research papers on Gröbner bases. An appendix contains the English translations of the original German papers of Bruno Buchberger in which Gröbner bases were introduced.
This book contains seven lectures delivered at The Maurice Auslander Memorial Conference at Brandeis University in March 1995. The variety of topics covered at the conference reflects the breadth of Maurice Auslander's contribution to mathematics, which includes commutative algebra and algebraic geometry, homological algebra and representation theory. He was one of the founding fathers of homological ring theory and representation theory of Artin algebras. Undoubtedly, the most characteristic feature of his mathematics was the profound use of homological and functorial techniques. For any researcher into representation theory, algebraic or arithmetic geometry, this book will be a valuable resource.
This book surveys progress in the domains described in the hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. It will be of wide interest amongst workers in algebraic geometry, number theory, algebra and topology.
The first of two companion volumes on anabelian algebraic geometry, this book contains the famous, but hitherto unpublished manuscript 'Esquisse d'un Programme' (Sketch of a Program) by Alexander Grothendieck. This work, written in 1984, fourteen years after his retirement from public life in mathematics, together with the closely connected letter to Gerd Faltings, dating from 1983 and also published for the first time in this volume, describe a powerful program of future mathematics, unifying aspects of geometry and arithmetic via the central point of moduli spaces of curves; it is written in an artistic and informal style. The book also contains several articles on subjects directly related to the ideas explored in the manuscripts; these are surveys of mathematics due to Grothendieck, explanations of points raised in the Esquisse, and surveys on progress in the domains described there.
Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.
The classification of algebraic surfaces is an intricate and fascinating branch of mathematics, developed over more than a century and still an active area of research today. In this book, Professor Beauville gives a lucid and concise account of the subject, expressed simply in the language of modern topology and sheaf theory, and accessible to any budding geometer. A chapter on preliminary material ensures that this volume is self-contained while the exercises succeed both in giving the flavor of the classical subject, and in equipping the reader with the techniques needed for research. The book is aimed at graduate students in geometry and topology.
In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
The classification of algebraic surfaces is an intricate and fascinating branch of mathematics, developed over more than a century and still an active area of research today. In this book, Professor Beauville gives a lucid and concise account of the subject, expressed simply in the language of modern topology and sheaf theory, and accessible to any budding geometer. A chapter on preliminary material ensures that this volume is self-contained while the exercises succeed both in giving the flavor of the classical subject, and in equipping the reader with the techniques needed for research. The book is aimed at graduate students in geometry and topology.
Successive waves of migrant concepts, largely from mathematical physics, have stimulated the study of vector bundles over algebraic varieties in the past few years. But the subject has retained its roots in old questions concerning subvarieties of projective space. The 1993 Durham Symposium on vector bundles in algebraic geometry brought together some of the leading researchers in the field to further explore these interactions. This book is a collection of survey articles by the main speakers at the Symposium and presents to the mathematical world an overview of the key areas of research involving vector bundles. Topics include augmented bundles and coherent systems which link gauge theory and geometric invariant theory; Donaldson invariants of algebraic surfaces; Floer homology and quantum cohomology; conformal field theory and the moduli spaces of bundles on curves; the Horrocks-Mumford bundle and codimension 2 subvarieties in p4 and p5; and exceptional bundles and stable sheaves on projective space. This book will appeal greatly to mathematicians working in algebraic geometry and areas adjoining mathematical physics.
Arakelov theory is a new geometric approach to diophantine equations. It combines algebraic geometry, in the sense of Grothendieck, with refined analytic tools such as currents on complex manifolds and the spectrum of Laplace operators. It has been used by Faltings and Vojta in their proofs of outstanding conjectures in diophantine geometry. This account presents the work of Gillet and Soulé, extending Arakelov geometry to higher dimensions. It includes a proof of Serre's conjecture on intersection multiplicities and an arithmetic Riemann-Roch theorem. To aid number theorists, background material on differential geometry is described, but techniques from algebra and analysis are covered as well. Several open problems and research themes are also mentioned.
Volume 2 gives an account of the principal methods used in developing a theory of algebraic varieties on n dimensions, and supplies applications of these methods to some of the more important varieties that occur in projective geometry.
This work provides a lucid and rigorous account of the foundations of algebraic geometry. The authors have confined themselves to fundamental concepts and geometrical methods, and do not give detailed developments of geometrical properties but geometrical meaning has been emphasised throughout. Here in this volume, the authors have again confined their attention to varieties defined on a ground field without characteristic. In order to familiarize the reader with the different techniques available to algebraic geometers, they have not confined themselves to one method and on occasion have deliberately used more advanced methods where elementary ones would serve, when by so doing it has been possible to illustrate the power of the more advanced techniques, such as valuation theory. The other two volumes of Hodge and Pedoe's classic work are also available. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.
Singularity theory encompasses many different aspects of geometry and topology, and an overview of these is represented here by papers given at the International Singularity Conference held in 1991 at Lille. The conference attracted researchers from a wide variety of subject areas, including differential and algebraic geometry, topology, and mathematical physics. Some of the best known figures in their fields participated, and their papers have been collected here. Contributors to this volume include G. Barthel, J. W. Bruce, F. Delgado, M. Ferrarotti, G. M. Greuel, J. P. Henry, L. Kaup, B. Lichtin, B. Malgrange, M. Merle, D. Mond, L. Narvaez, V. Neto, A. A. Du Plessis, R. Thom and M. Vaquie. Research workers in singularity theory or related subjects will find that this book contains a wealth of valuable information on all aspects of the subject.
In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Among the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves; there is also a new proof of the TsfasmanSHVladutSHZink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work.
This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology.
In this book, Professor Kempf gives an introduction to the theory of algebraic varieties from a sheaf theoretic standpoint. By taking this view he is able to give a clean and lucid account of the subject, which will be easily accessible to all newcomers to algebraic varieties.
Algebraic geometers have renewed their interest in the interplay between algebraic vector bundles and projective embeddings. New methods have been developed for questions such as: what is the geometric content of syzygies and of bundles derived from them? how can they be used for giving good compactifications of natural families? which differential techniques are needed for the study of families of projective varieties? Such problems have often been reformulated over the last decade; often the need for a deeper analysis of the works of classical algebraic geometers was recognised. These questions were addressed at successive conferences held in Trieste and Bergen. New results, work in progress, conjectures and modern accounts of classical ideas were presented. This collection represents a development of the work conducted at the conferences; the Editors have taken the opportunity to mould the papers into a cohesive volume. |
You may like...
Variational Inequalities and Network…
F. Giannessi, A. Maugeri
Hardcover
R2,821
Discovery Miles 28 210
Stochastic Geometric Mechanics - CIB…
Sergio Albeverio, Ana Bela Cruzeiro, …
Hardcover
Contemporary Research in Elliptic PDEs…
Serena Dipierro
Hardcover
The Early Period of the Calculus of…
Paolo Freguglia, Mariano Giaquinta
Hardcover
R4,056
Discovery Miles 40 560
Trends in Control Theory and Partial…
Fatiha Alabau-Boussouira, Fabio Ancona, …
Hardcover
R3,994
Discovery Miles 39 940
Complements of Higher Mathematics
- Marin Marin, Andreas Oechsner
Hardcover
R2,699
Discovery Miles 26 990
Convex Analysis and Nonlinear…
Jonathan Borwein, Adrian S. Lewis
Hardcover
R1,741
Discovery Miles 17 410
|